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ABSTRACT

NAND flash SSDs have gained increasing popularity in cloud

storage services. However, there is a gap between what users

need and what cloud SSDs provide. For users, storage appli-

cations often request asymmetric read and write bandwidth,

with tail read latency guarantee. For cloud providers, typi-

cal cloud SSD offerings either provide read-write aggregate

throughput guarantee or only specifies peak pure-read and

write throughput. It is also hard for cloud NAND flash SSDs

to provide tail latency guarantees because of their notorious

read-write interference problem. As a result, users have to

over-provision SSD resource to satisfy their service level

agreement (SLA), leading to potential under-utilization.

We propose Regulator which enables users to define their

SLA for NAND flash based cloud storage. With the user-

defined SLA, users can get desired performance and cloud

providers can improve their resource efficiency. Regulator

first proposes a formalization of user-defined SLA as SLA

Curve, which contains fine-grained throughput and latency

requirements. Regulator then proposes an SLA-aware data

placement algorithm to efficiently co-locate users according

to their SLA. Finally, Regulator provides a runtime QoS mod-

ule to enforce users’ SLA guarantees. Evaluation shows that

Regulator can increase cloud flash utilization by 15%~44%

while satisfying user-defined SLAs.
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1 INTRODUCTION

Recently, NAND flash SSD is receiving increasingly wider

adoption in cloud data centers [16, 18, 20, 21], because they

provide much higher throughput and much lower access

latency compared with hard disks [6]. Specifically, NAND

flash provides much better random access performance com-

pared with hard disks, making it more suitable for serving

multiple tenants at the same time. As a result, many cloud

services including Amazon AWS [2] and Microsoft Azure [3]

are providing SSD-based cloud storage services, e.g., EBS pro-

visioned IOPS volumes, AWS I3 storage optimized instances,

etc.

However, what cloud users need often does not align with

what cloud SSDs could provide. For bandwidth, users require

various kinds of performance guarantees. Different applica-

tions require quite different read/write bandwidth. However,

cloud SSDs cannot provide such flexibility. For throughput,

typically they only offer overall throughput guarantee that

does not distinguish reads and writes [1, 4]. For latency,

users expect their storage devices to have tail latency guar-

antee, e.g., less than 500us latency for 95% accesses. However,

NAND flash suffers read-write interference, i.e. there is a

severe regression on throughput and latency of read under

mixed read/write traffic[22].

Figure 1 demonstrates this dilemmawith two typical cloud

storage workloads. In Figure 1a, the tenant runs a read-write

mixed application (Used), e.g., the YCSB workload in Figure 3.

It has to provision for the maximum aggregate throughput

under all read-write-ratios (Reserved). Therefore, the reser-

vation contains some situation that its application never

reaches (Wasted). The reservation also fails to make full

use of the available bandwidth of the physical SSD, whose

maximum service capability is described by the green line

(Actual SSD). For the read-intensive application in Figure 1b

(e.g., index serving [20], photo tagging [30]), the SSD is not

able to serve the tenant even though it only actually uses

a small portion of its bandwidth capability. To make things

even worse, if both types of applications require non-trivial
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Figure 1: Example cloud storage applications and their

bandwidth reservations under traditional cloud stor-

age SLA.

read latency guarantee, their actual SSD throughput area

would shrink dramatically, because only little write would

be allowed under read-write interference. This makes SSD

utilization even lower.

Our insight is that such flash under-utilization comes from

the cloud operators’ unawareness of user requirements. As

resource disaggregation breaks server boundaries[16, 27],

cloud operators are able to do more fine-grained resource

allocation according to user requirements while achieving

better utilization.

We propose Regulator, a system that enables users to define

SLAs for their cloud-based flash SSDs. Regulator first formal-

izes user’s SLA requirement as SLA Curves, This formaliza-

tion is informative enough to express both read-write asym-

metry and read latency sensitivity in applications and SSDs.

To increase flash utilization, Regulator proposes a novel re-

source allocation algorithm that leverages SLA Curve infor-

mation to efficiently place different kinds of tenants onto

physical SSDs. Finally, Regulator provides a QoS module that

schedules I/O requests sent to SSDs to enforce SLA.

We prototype Regulator using SPDK, a library for high per-

formance storage processing. Simulations and experiments

on synthetic workloads show that Regulator can increase

flash utilization by 15%~44% while satisfying tenant SLAs.

Our work makes the following contributions:

• We propose a novel user-defined SLA for virtual SSDs.

This SLA is informative enough to make cloud providers

be aware of both read-write asymmetry and read latency

sensitivity in applications.

• We carefully design and implement a system to increase

flash utilization while satisfying the SLA formalized, con-

sisting of an algorithm to partition and allocate SSD re-

source and virtual SSDs without read-write interference.

The rest of this paper is organized as the following. Sec-

tion 2 introduces background information and related work.

Section 4 and 5 presents the design and implementation of

Regulator. Section 6 shows the evaluation results of Reg-

ulator, and Section 7 discusses the limitation of Regulator.

Section 8 concludes the paper.

2 BACKGROUND AND RELATEDWORK

2.1 User-Defined Storage

The current SSD-based cloud storage offerings does not align

well with user needs. they still use an SLA that dates back to

HDD-era which does not distinguish read and write accesses.

Moreover, it only has vague latency guarantees. For example,

AWS’s most advanced io2 Block Express volumes claim to

have an IOPS:GiB ratio of 1,000:1 with sub-millisecond aver-

age latency. As demonstrated in Figure 1, this forces users to

reserve extra bandwidth that they will never use. The weak

latency guarantee also pushes clients to turn to directly at-

tached SSD instances, because modern OLTP services usually

require strict tail latency guarantee [8]. However, even those

directly attached SSD instances (e.g., AWS I3) only speci-

fies pure-read and write throughput and has no information

about what happens in between.

There have been research on user-defined hardware. User-

Defined Cloud (UDC) [35], which is quite similar to our user-

defined SLA methodology. Instead of letting cloud providers

offer fixed hardware options, UDC proposes that users can

customize virtual hardware according to their own require-

ment, which would increase overall resource utilization.

UDC assumes that it is in a hardware disaggregated system,

where users have access to a seemingly infinite resource

pool. There have been several SSD disaggregation systems

[14, 17, 19, 23, 34]. However, they do not solve read-write

asymmetry and read-write interference in NAND flash.

2.2 Tail Latency Problem with NAND Flash

Modern cloud applications require strict tail latency guaran-

tees [8]. However, NAND flash based SSDs are notorious for

their bad tail latency because of the read-write interference

problem[6, 17, 25, 28]. When they serve mixed read and write

workload, both bandwidth and read tail latency downgrade

severely.

We measure how such tail latency problem exists on Sam-

sung PM963 [26], which is a widely adopted NAND flash

SSD in data center. The results are shown in Figure 2. When

mixed with 4KB random write, 4KB random read tail latency

increases up to 10x with write ratio only around 5%(Fig-

ure 2a). If we set an upper bound for its 95 (P95), 99 (P99)

and 99.9 (P999) percentile latency (Figure 2b), the read band-

width the SSD can provide also drops significantly as write

throughput increases. We choose to focus on read tail la-

tency here because in read-write interference, only read is

influenced by write but not vice versa [25]. Both throughput
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Figure 2: Tail Latency Problem On Samsung PM963

and latency of write stays quite tuned no matter how read

I/O pressure changes.

Such downgrade is believed to be caused by SSD back-

ground operations incurred by writes, including write buffer

flush and garbage collection [6]. These operations block the

execution of other requests on the same SSD, resulting in

irregular latency of reads. Although applications can batch

writes to minimize write interference on reads, it is not feasi-

ble to count on other co-located tenants to stop isssuing write

requests when one tenant is doing reads. However, as shown

in Figure 2b, by controlling read and write throughput, we

can make SSD internal activities happen less frequently, thus

improving tail latency, which is a statistical result.

There has been some research trying to resolve this down-

grade. SmartIO [22] and FIOS [25] proposes to use an I/O

scheduler suspend writes until there are no more ongoing

reads. Such priority scheduling improves read latency, but

they are not accurate enough for SLA enforcement. ReFlex

[17] achieves both throughput and latency SLA according to

an SSD performance model. It does so by assigning a weight

to writes and using weighted IOPS for bandwidth allocation.

However, its learning-based model is not accurate enough

for all SSDs. Meanwhile, its bandwidth allocation scheme

assumes users have a fixed read-write ratio, which is not true

for all applications(§ 3). Flash on Rails [28] and Tiny-Tail

Flash [33] try to solve the tail latency problem at the SSD

level. They split SSD working time into different time slices,

send only reads or writes in a single time slices and coordi-

nate different SSDs to build a virtual SSD without read-write

interference. SWAN [15] splits an all-flash array into front-

end SSDs that performs log-structured writes and back-end

SSDs that does GC in order to mitigate GC interference. Re-

cently, LinnOS [12] uses a lightweight neural network to

predict SSD’s performance instability.

3 SLA CURVE AND ITS ARITHMETIC

In this paper, we propose SLA Curve to represent tenants’

bandwidth requirements as well as storage devices’ service

capability. Specifically, the SLA Curve describes the max-

imum read throughput for each write throughput while

achieving a certain read tail latency guarantee. It does not

include write latency because writes are usually not on the

critical path and write latency is also not easily impacted by

multi-tenant interference(§ 2). Specifically, we define SLA

Curve as a function of write throughput. As explained in § 2,

by ensuring read and write throughput under the SLA Curve,

we can keep the frequency of SSD’s internal activities low

enough, therefore guaranteeing tail latency. For example,

for SLA Curve A, 𝐴[𝑤] = 𝑟 means when the user’s write

throughput is𝑤 , if the user wants to guarantee its required
tail latency, it can only send read requests with a rate up

to 𝑟 . This definition not only distinguishes read and write

requirements, but also defines throughput requirements at

all read-write ratios.
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Figure 3: Read and Write throughput when running

YCSBWorkloadAonRocksDB.An example SLA curve

describes its bandwidth requirement.

The definition of SLA Curve naturally fits users’ applica-

tion needs. In Figure 3, we analyze the SNIA YCSB RocksDB

SSD trace [32] collected by running YCSB Workload A [7].

The blue dots are throughput sampled at one-second interval

during a twelve-minute period. As shown in the figure, the

workload has asymmetric bandwidth requirements for reads

and writes. It does not have an easily observable read-write

ratio. We derive the SLA curve with a convex hull algorithm

on the sampled points [5]. In practice, SLA Curves can be

obtained by such sampling based approaches.

SLA Curves are also applicable for storage devices. Actu-

ally, the PM963 curve in Figure 2b can be viewed as the SLA

Curve for PM963 under different tail latency requirements.

We use 4KB random accesses to measure device curves be-

cause it is usually the worst case for all access patterns. As

long as user requirements can be met for this worst case, it

can be satisfied under other cases.

SLA Curve is informative enough to solve the problems

in Figure 1. For the read-intensive workload, the SSD will

accept the user after making sure the it can indeed fulfill

the user’s SLA Curve. For the read-write mixed workload,

the maintainer can also introduce other tenants to share
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the remaining space under the SSD’s SLA Curve, or simply

assign more bandwidth to this tenant.

Based on the definition of SLA Curves, we define the fol-

lowing SLA Arithmetic. These arithmetic operations form

the basis of our SLA-aware SSD resource allocation design

(§ 4.1).
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Figure 4: Sum of SLA curves

When multiple tenants are sharing the same storage de-

vice, we need to know their aggregate bandwidth require-

ments. Therefore, The first arithmetic operation defines the

addition between SLA Curves. At any time, their aggregate

bandwidth usage will be sum of their individual bandwidth.

Because the SLA Curve represent the lower bound of their

resource requirement, the summation 𝑆 [𝑤] is defined as the

maximum sum of read bandwidth of all points on the two

curves whose write bandwidth sum as𝑤 , which is given in
Definition 1 and demonstrated in Figure 4.

Definition 1. The sum 𝑆 of SLA Curves𝐴 and 𝐵 is defined

as:

𝑆 [𝑤] = max
0≤𝑖≤𝑤

(𝐴[𝑖] + 𝐵 [𝑤 − 𝑖]) (1)
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Figure 5: Subtraction between SLA curves

When one tenant is assigned to a storage device, We need

to calculate the remaining service capability of the device.

Therefore, the second operation is the subtraction between

SLA Curves, which is only valid when one SLA Curve is

contained in another. According to the definition of SLA

Curves, the residual curve represents the upper bound of

the SSD’s remaining bandwidth. Therefore, the difference

𝐷 [𝑤] is defined as the minimum difference between the

read bandwidth of points on the two curves whose write

bandwidth difference is𝑤 , which is given in Definition 2 and
Figure 5.

Definition 2. The difference 𝐷 between SLA Curves 𝐴
and 𝐵 is defined as:

𝐷 [𝑤] = min
𝑤≤𝑖≤𝑤𝑚𝑎𝑥 (𝐴)

(𝐴[𝑖] − 𝐵 [𝑖 −𝑤]) (2)
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Figure 6: Regulator system overview

, where𝑤𝑚𝑎𝑥 (𝐴) means the maximum write bandwidth of A.

4 SLA CURVE BASED SYSTEM DESIGN

Based on SLA Curves, we design Regulator, a flash storage

system that allows storage users to define their SLA by SLA

Curves.

Figure 6 is an overview of Regulator’s architecture. There

are mainly four parts in our system: the tenants, the Regu-

lator controller, the I/O scheduler and storage units. Both

tenants and storage units describe their SLA with an <SLA

Curve, Read Tail latency requirement> tuple. The difference

is that each type of storage unit has a field P for its cost,

which can be the price of price of the device, its power con-

sumption, etc. On the control path, the Regulator controller

is responsible for allocating tenants’ storage spaces using a

heuristic SLA-aware data placement algorithm (§ 4.1). On the

data path, the Regulator I/O scheduler performs bandwidth

allocation at runtime to ensure the tenants get their desired

bandwidth and tail latency guarantee as defined by their SLA

(§ 4.2).

4.1 SLA-Aware Data Placement

In a cloud flash storage system, multiple tenants typically

share multiple physical storage units. When a new tenant

is registered, the Regulator controller has to determine on

which storage unit to place the tenant’s data. This is particu-

larly important for our SLA Curve based resource allocation

scheme because failing to do efficient tenant co-location will

severely downgrade the overall resource utilization. For ex-

ample, in Figure 5, co-locating the red and blue curves will

leave some of the SSD’s possible bandwidth capability never

used.

The multi-tenant resource placement problem is often

modeled as a bin packing problem [31]. The traditional bin

packing problem is described as packing multiple items of

different sizes into fixed-sized bins to minimize the total

number of used bins. Its optimal solution is known to be NP-

hard, but there are a few effective approximate algorithms.

One of the most widely used online bin packing algorithm
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is best-fit. The algorithm executes in two phases when a

new item comes in. First, it greedily selects the bin with the

minimum capacity remaining that can fit the item. Then, if

no available bin can fit the item, it starts a new bin.

Compared with the traditional bin packing problem, there

are some differences that make our SLA Curve based stor-

age allocation challenging. For the first phase, the "size" and

"capacity" of tenants and storage units are described using

SLA Curves instead of a scalar value. This makes finding the

"best" remaining bin hard because there is no clear definition

of what curve is "minimum". For the second phase, the stor-

age units in cloud are highly heterogeneous with diverse SLA

Curves and costs. This means we need to consider which

type of storage unit to select when we need a new one.

Here we describe how we adapt the best fit algorithm to

Regulator’s SLA-aware data placement algorithm. In the first

phase, we use metrics inspired by vector bin packing [11, 24]

to determine the fitness between tenant and device SLA

Curves. Specifically, we consider not only whether the de-

vice’s curve fits tenant’s demand, but also how well the two

curves align with each other. The intuition is that if a tenant

is assigned to a device with poor SLA Curve alignment, it

is likely to cause more bandwidth wastes, which is already

demonstrated in Figure 5. Three example metrics can be used

for SLA Curve alignment: 1) Dot product which emphasizes

the shape similarity between SLA Curves, 2) L2-norm which

represents the distance between SLA Curves, 3) Ratio be-

tween areas of two SLA Curves. They perform similar in our

preliminary experiments.

Next, if we need to start a new storage unit in the sec-

ond phase, the Regulator data placement algorithm greedily

chooses the storage unit that minimizes the cost for the cur-

rent tenant. Specifically, it calculates the cost needed to fit

the tenant’s SLA requirement for each type of storage unit.

If a single storage unit can not meet the need of the tenant,

the algorithm strips the data across multiple storage units to

avoid hotspots.

Some tenants may require tail latency guarantees so strict

that it is hard to provide with plain NAND SSDs. To sat-

isfy such tail requirements, we leverage [28] to construct

redundant SSD arrays without read-write interference.

4.2 SLA-Enforcing I/O Scheduling

Although Regulator’s data placement algorithm makes sure

tenants’ SLA can be effectively satisfied by the storage device,

the SLA needs to be actually enforced at runtime. Regula-

tor’s I/O scheduler does so by controlling the read and write

throughput of each tenant sharing a same storage unit. With

the Regulator I/O scheduler, tenants can get their desired

bandwidth specified by the SLA Curve. Also, the overall

bandwidth usage is always controlled within the device’s

SLA Curve so the tail latency is guaranteed.

Algorithm 1: Regulator I/O Scheduling Algorithm

/* Schedule according to tenants’ curve */

disk.readBytes = disk.writeBytes = 0;

foreach tenant t do

t.readBytes = t.writeBytes = 0;

while t.readBytes <= t.curve[t.writeBytes] do

if t.queue.empty() then break;

else req = t.queue.pop();

t.submitRequest(req);

if req.isRead then t.readBytes += req.size;

else t.writeBytes += req.size;

end

disk.readBytes += t.readBytes;

disk.writeBytes += t.writeBytes;

end

/* Weighted-round-robin for spare disk BW */

while True do

foreach tenant t do

bytes = 0 ;

while bytes < t.weight do
if disk.readBytes >
disk.curve[disk.writeBytes] then return;

if t.queue.empty() then break;

else req = t.queue.pop();

t.submitRequest(req);

if req.isRead then disk.readBytes +=

req.size;

else disk.writeBytes += req.size;

bytes += req.size;

end

end

end

To control the bandwidth of both reads and writes, the

Regulator I/O scheduler performs curve-based rate limiting.

In each timeslice, it tracks the read and write bandwidth

usage of each tenant. Upon the arrival of a tenant I/O request,

it checks whether the current bandwidth usage has exceeded

its SLA Curve. If not, the scheduler submits the request to

the storage unit. Otherwise, it keeps the request in a waiting

queue until a new timeslice begins.

We are also aware that it is hard to select an accurate SLA

Curve. In fact, we do not recommend choosing an SLA Curve

that covers all the bandwidth outliers because that will likely

cause a waste of bandwidth, as shown in Figure 3. There-

fore, the Regulator scheduler can optionally allow tenants to

temporarily burst above their SLA Curves. The bursty band-

width is considered best-effort and only available when the

aggregate bandwidth does not exceed device’s SLA Curve. To

5
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avoid contention with non-bursty traffic, the bursty accesses

are only scheduled when no non-bursty request is waiting

to be dispatched. When multiple tenants burst above their

curve, the Regulator scheduler uses weighted round robin

to share the extra bandwidth. Requests larger than 64KB are

split into ones less than 64KB to enforce fairness.

The I/O scheduling is done on the storage units, because

they have full knowledge about all tenants that are accessing

them. Moreover, only putting the scheduler at the storage

server can make sure the storage device always runs under

its desired SLA curve, because network-induced variable

delay can make the scheduling results indeterministic.

5 IMPLEMENTATION

We implemented a prototype system for Regulator mainly

based on Storage Performance Development Kit (SPDK) [34].

The preliminary prototype is implemented on a local stor-

age pool. In the future, we plan to extend Regulator on a

disaggregated storage cluster.

We implemented the Regulator controller in C++. It is

responsible for assigning SSD resources to tenants, as well

as managing storage units. When a new tenant is registered,

the controller runs the data placement algorithm (§ 4.1) to

determine a mapping between the tenant’s logical storage

space and SSD’s storage space. Then, it sends the mapping

to the new tenant. If the algorithm determines some new

storage unit is needed, the controller informs the storage

server through RPC.

We also provide a userspace Regulator library at the client

side. The library is implemented as a virtual block device of

SPDK. It stores the address mapping obtained on registration.

When the tenant submits an I/O request, the Regulator li-

brary code translates the address from tenant’s address space

to the storage unit’s address space. Then, it sends the request

to the corresponding storage units on behalf of the tenant.

The Regulator I/O scheduler is implemented as an exten-

sion of SPDK’s bdev layer at the storage server. The scheduler

runs the SLA-enforcing algorithm (§ 4.2) at the storage server.

We implemented the I/O scheduler with multi-core scalabil-

ity in mind. Requests from all user threads are first sent to a

dedicated scheduling thread through a lockless FIFO queue.

All the scheduling work, including bookkeeping of tenant

states, are then handled by the scheduling thread alone. This

design minimizes the synchronization overhead between

threads. The scheduling thread performs polling with high

processing throughput. As SPDK can achieve 10MIOPS on a

single thread [29], the scheduling thread will not be a per-

formance bottleneck.

6 EVALUATION

In this section, we first run a simulation with hundreds of

tenants to show the resource efficiency of Regulator’s SLA-

aware data placement algorithm. We then evaluate Regula-
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Figure 7: Resource Savings for SLA-Based SSD Alloca-

tion

tor’s I/O scheduler to show its ability of guaranteeing SLA.

The evaluation is done on a server machine with 32 Intel

Xeon CPU E5-2698 processor cores across two sockets run-

ning at 2.3GHZ. The server is equipped with 192GB DRAM.

It runs Ubuntu LTS 18.04 with Linux kernel 4.17.12. We use

Samsung PM963 SSDs in our experiment.

6.1 Resource Utilization

In the first experiment, we run a simulation of multiple ten-

ants with different SLA requirements registering on our Reg-

ulator system. We randomly generated 3 tenant groups, with

P95, P99, P999 read tail latency requirements respectively.

Each group has 300 tenants, with 100 read-intensive ones,

100 write-intensive ones, and 100 read-write mixed ones. We

only used Samsung PM963 for the P95, P99 tests. As it is hard

for PM963 to provide P999 guarantees, we used the method

proposed in [28] to construct redundant SSD arrays with

strict tail latency guarantee.

We compare Regulator’s SLA-aware data placement with

three resource allocationmethods. "IOPS" uses the traditional

SLA offering scheme in cloud that uses aggregate through-

put of both read and writes, similar to Figure 1. "Weighted

IOPS" assigns a weight to write requests, which is similar

to ReFlex’s method [17]. The write weight is set to 3, 6 and

20 for P95, P99 and P999 cases respectively. "SLA Curve"

only uses SLA Curve to represent resource requirements,

but does not use our bin-packing based data placement al-

gorithm. The above three methods use a brute-force data

placement algorithm that placement tenant randomly into

available storage units. Because the exact solution is NP-hard,

we do not compare with the ideal case.

To compare the resource utilization, we count the number

of used disks for each method. As shown in Figure 7, the

IOPS approach is too inefficient for SSDs with asymmetric

read-write bandwidth, resulting in around 4x wastes com-

pared with SLA Curve based approaches. In the P95 and P99

cases, simply utilizing our fine-grained SLA Curve to repre-

sent bandwidth requirements can improve utilization by 41%

and 15% respectively. The advantage looks smaller for the

6
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P999 case, because the device’s SLA Curve is very close to

linear(Figure 2b, which is suitable for using weighted IOPS.

However, the benefit of SLA-aware data placement becomes

crucial here because more storage unit types are introduced

and resource selection and allocation becomes more impor-

tant. It improves the overall utilization by 44% for the P999

case.

6.2 Performance SLA

The second experiment evaluates the Regulator I/O sched-

uler using two synthetic tenants. Tenant A runs a latency-

sensitive application (e.g., online key-value store). Tenant A

follows a linear SLA curve with max 180 KIOPS read and max

18 KIOPS write. Tenant B is a "noisy neighbor" that shares

the same storage device with tenant A. It issues read and

write randomly. When limited by Regulator, it has a linear

SLA curve with max 120 KIOPS read and 12 KIOPS write.

Together, these two tenants forms a linear SLA curve with

max 300 KIOPS read and 30 KIOPS write, which provides

500us read 95th latency guarantee.

We run the two tenants on Samsung PM963. As shown

in Figure 8, tenant A’s bandwidth share is impacted by B’s

bursty accesses. We randomly chose a sixty-second period

to measure tenant A’s tail latency. As shown in Figure 9,

tenant A violates its tail latency requirements because of

interference from tenant B.

Therefore, we use Regulator’s I/O scheduler to limit tenant

B’s bandwidth usage according to its SLA Curves. We set

the tenant B’s SLA Curve slightly larger than its normal

throughput to throttle the bursty accesses. We turned off

the scheduler’s bursty feature to demonstrate its ability for

controlling bandwidth. As demonstrated in Figure 8, both

tenants are kept running under their SLA Curve. Tenant

A’s read tail latency is also precisely controlled within its

latency requirement because the interference from tenant B

is reduced. We also run the experiment on Intel DC P3700

SSD and get similar results, which are not presented here

due to space limitation.

7 DISCUSSION

Obtaining SLA Curves. In § 3, we use a simple convex

hull algorithm on sampled throughput points to get the SLA

Curve. In the future, more advanced methods can be derived

to accurate predict an application’s SLA Curve. We envision

a future where the cloud providers can help users understand

their workloads. For example, through profiling and collab-

orative filtering [9], the cloud provider can recommend a

feasible SLA Curve to the user.

Hardware acceleration. Currently, Regulator uses soft-

ware SPDK for I/O scheduling and NVMe accesses. This

causes some host CPU and memory overhead. In the future,

(a) Latency-Sensitive Tenant

A

(b) "Noisy-Neighbor" Tenant

B

Figure 8: SLA Curve Enforcement

Figure 9: Tenant A’s P95 Read Latency

we plan to offload these functionality to SmartNICs for hard-

ware acceleration. There are already works that offload QoS

modules to accelerator hardware. For example, Microsoft

Azure Networking uses SmartNIC for flow tracking and rate

limiting [10].

Generalize to other types of storage.We mainly focus

on NAND flash SSDs because is asymmetric read and write

bandwidth and high tail latency causes a lot of headache for

application developers. In fact, the concept of SLA Curves

and user-defined storage can generalize to other devices in

the storage hierarchy like HDD, DRAM and new types of

NVM like Intel Optane SSDs [13].

8 CONCLUDING REMARKS

This paper proposes Regulator, a system enabling users to

define SLA for NAND flash based virtual SSDs in cloud stor-

age. Regulator formalizes virtual SSD SLAs as read-write

curves with tail latency upper bounds. Regulator provides a

novel resource allocation algorithm to place different kinds

of tenants onto physical SSDs according to SLA Curves. We

implement Regulator in SPDK, and evaluation shows Reg-

ulator’s ability to increase flash utilization while keeping

tenants’ SLAs.

7
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