
What’s Inside My App?:
Understanding Feature Redundancy in Mobile Apps

Yao Guo, Yuanchun Li, Ziyue Yang, Xiangqun Chen
Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
{yaoguo,liyuanchun,yzydzyx,cherry}@pku.edu.cn

ABSTRACT

As the number of mobile apps increases rapidly, many users
may install dozens of, or even hundreds of, apps on a single
smartphone. However, many apps on the same phone may
contain similar or even the same feature, resulting in feature
redundancy. For example, multiple apps may check weather
forecast for the user periodically. Feature redundancy may
cause many undesirable side-effects such as consuming extra
CPU resources and network traffic. This paper proposes
a method to identify common features within an app, and
evaluated it on over four thousand popular apps. Experiments
on a list of apps installed on actual smartphones show that the
extent of feature redundancy is very high. We found that more
than 85% of user smartphones contain redundant features,
while in extreme cases, some smartphones may contain dozens
of apps with the same feature. In addition, our user surveys
found out that about half of the redundant features are
undesirable from the end users’ perspective, which indicates
that feature redundancy has become an important issue that
needs to be investigated further.

KEYWORDS

Mobile apps; feature; app bloat; redundancy; Android.

ACM Reference Format:

Yao Guo, Yuanchun Li, Ziyue Yang, Xiangqun Chen. 2018. What’s

Inside My App?: Understanding Feature Redundancy in Mobile
Apps. In ICPC ’18: 26th IEEE/ACM International Confernece on

Program Comprehension, May 27–28, 2018, Gothenburg, Sweden.

ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3196321.3196329

1 INTRODUCTION

With the prevalence of smartphones, new mobile applications
(apps for short) have been developed and released at a
dramatic speed. The number of apps in both Apple App
Store and Google Play has surpassed the two million mark in

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . 15.00
https://doi.org/10.1145/3196321.3196329

2016, while the number of apps in Google Play has reached
three million in 2017. The total number of app downloads in
Google Play and App Store worldwide was at 27 billion in
the final quarter of 2017, according to App Annie.

With so many apps available for downloading, and most
of them free, most smartphone users have installed dozens,
or even hundreds of, apps on their smartphones. According
to the Yahoo Aviate study in 2014, Android users have an
average of 95 apps installed on their phones [29].

At the same time, many apps tend to include more and
more features in a single app. A popular weather app may
evolve into an “all-around” app with all kinds of features
including news feed, app management, schedule management,
map and navigation, etc. This phenomenon has sometimes
been designated with the term software bloat or “bloatware”.

As there are many apps installed on a smartphone and
some of these apps may contain features not designed as their
main feature or functionality, it becomes inevitable that some
of the features in these apps may become redundant. For
instance, a user may install multiple apps that check weather
forecast periodically on his/her smartphone. In this paper,
we refer to this phenomenon as feature redundancy.

Feature redundancy not only takes up valuable memory
and space on the phone, it may also cause other undesired
side-effects such as wasted CPU, network traffic and extra
battery consumption. Having more than one apps checking
weather forecast information for the same user on the same
smartphone is potentially a waste of network data traffic and
battery consumption. The situation becomes worse if there
are not only a few, but more than a dozen apps, doing the
same things over and over again.

The goal of this paper to identify redundant features
from the installed apps and understand the extent of feature
redundancy on a smartphone. We first present a simple NLP-
based method to identify common features from an Android
app, and then evaluate the method on a set of popular apps.
Once we successfully uncover the features within each app, we
can study the extent of feature redundancy with a collection
of used/installed apps from real smartphones.

Our first challenge is how to uncover the features provided
by each app. As many features are not advertised in an app’s
description, we cannot trust feature identification based on
app descriptions. Thus, we propose a feature identification
method based on the UI resources in each app’s installation
package. We use a simple NLP-based method to form a
list of keywords related to each feature, and developed a
taxonomy of six common features with their corresponding

266

2018 ACM/IEEE 26th International Conference on Program Comprehension

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Y. Guo et al.

keywords. With this taxonomy, feature identification has
been transformed into a keyword-matching problem.

We evaluated the feature identification algorithm on a
set of popular apps downloaded from both Google Play
and a popular third-party market. Out of the 4,000 apps,
we have identified more than 3,200 instances of the six
popular features we studied. About 22% of the studied
apps contain more than one potentially redundant features.
Manual examination on a list of 50 top apps shows that the
algorithm achieves a precision of almost 90%.

In order to evaluate the extent of feature redundancy, we
use two sets of real-world user data: a large-scale used app list
of 600,000 users from a popular app market, and an installed
app list collected from 87 volunteers. When considering the
large-scale dataset with used apps, we found that more than
85% of smartphones contain potentially redundant features,
while 71% of them contain more than one types of potentially
redundant features. When we consider the small-scale dataset
with installed apps, the extent of feature redundancy becomes
more severe, as 86 out of the 87 users contain some kinds
of potentially redundant features, while more than 60% of
these smartphones include all six redundant features.

We also designed a user study to ask users to indicate
which features are unnecessary for each app. The survey result
shows that 45% of the features surveyed are not desired from
end users’ perspective. The most undesirable features are
schedule, app management, and email/messaging services.

Many users do not realize what kind of features are
contained in each app, thus do not understand the severity of
feature/function redundancy. Once they are presented with
the information on potentially redundant features on their
smartphones, many of them are surprised and want to know
what they can do to reduce the level of redundancy. Thus we
also discuss possible mitigation methods to remove/reduce
some of the redundant features.

This paper makes the following key contributions:

• To the best of our knowledge, this is the first work
revealing and demonstrating the prevalence of the
problem of feature redundancy in mobile apps installed
on Android smartphones.

• We propose a method to identify common features
within an Android app. The method has been evaluated
on more than 4,000 popular apps, with an identification
accuracy of about 90%.

• We conduct a study on the extent of redundancy in real
user data. The study shows that feature redundancy
widely exists in the real world, with about 85% of the
users having some kind of potential feature redundancy
on the apps installed on their phones.

2 BACKGROUND AND RELATED
WORK

2.1 Android Apps

Android has become the most widely used mobile platform
for smartphones. At the same time, Android apps have been
developed at a rapid speed. The number of Android apps has

been increased much faster in recent year: from one million
to two million in almost three years, while from two million
to three million in a little over one year [28].

Users install apps to use various features, while the
features are programmed by app developers. Some features
are user-driven, which are activated upon user interaction and
deactivated once the session ends, such as “making a phone
call”, “sending a text message” and “searching the web”.
Other features are not driven by user interaction, instead
they periodically run in the background and notify users if
necessary, for example a weather feature needs to continuously
fetch weather data and tells the user about weather changes
in (almost) realtime.

Users interact with Android apps through user interfaces
(UI). The UI of an Android app reflects the features in most
cases. In particular, the text found in UI often represents
the features in an app. For example if there are words like
“forecast”, “sunny” and “temperature” in the UI, it may
indicate that the app owns a “weather” feature.

2.2 App Bloat

Software bloat is a process where successive versions of
a computer program become perceptibly slower, use more
memory, disk space or processing power than the previous
versions [34]. It is originally a problem found in Windows
PCs, and now become an increasingly important problem in
mobile devices as well [27].

Modern mobile systems are designed to prevent bloat,
as it allows apps to share data with each other easily (for
example using Intent [8] in Android). Mobile apps should be
lightweight and streamlined for its own tasks, while ideally
many small apps work together to complete complex tasks.

However, the software bloat problem also exists in the
mobile platforms. Due to security concerns or financial
considerations, many mobile app developers are adding more
and more features to their own app, instead of making use
of the existing (same) features in other apps.

App bloat is one of the main causes of feature redundancy.
For example, app updates should be controlled by Google
Play [33], so that only Google Play needs to check for updates
of all the installed apps in the background. However, in order
to be compatible with devices without Google services, many
apps choose to check their update schedule separately. Thus
it is quite common that many installed apps on a smartphone
having a redundant “app management” feature, which means
that they may waste resources to check individually whether
their apps have a new version to download.

2.3 Feature Location/Extraction

Inferring and understanding the feature of code/software has
been a popular research topic in the software engineering
research community for a long time.

Feature location, which is known as the process of
identifying an initial location in the source code that
corresponds to a specific functionality, has been one of
the most important and common activities performed by

267

Understanding Feature Redundancy in Mobile Apps ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

programmers during software maintenance and evolution [9].
There are mainly three types of analysis methods for feature
location: dynamic, static and textual analysis.

Dynamic analysis examines the code traces that are
actually executed at runtime, and then binds them with
features observed. The code traces can be compared to each
other in order to find feature-specific code [10, 35]. Static
analysis examines the internal structure of programs like
control or data flow dependencies. This is typically how
feature locations are manually done: programmers jumps
between files according to module dependencies [4]. Textual
analysis infers the feature of code pieces by the naming
information. Common machine learning and information
retrieval techniques are used in textual analysis.

Approaches targeting traditional software mainly make
use of text processing techniques such as LSI (Latent
Semantic Indexing) and LDA (Latent Dirichlet Allocation)
to determine the features in a software based on the textual
information in code. For example, Mudablue [16] and Tian et
al. [30] use LSI and LDA, respectively, to automatically
categorize the open-source repositories, regarding a software
system as a document and an identifier as a word. Similarly,
Kuhn et al. [17], Baldi et al. [2] and Maskeri et al. [23]
proposed text-based methods to extract topics from code.

However, in modern software such as Android apps, textual
information in code is often obfuscated in released versions.
Researchers have explored other methods to infer the features
within Android apps. Kanda et al. [15] extract features
from source code of Android apps based on the pattern
of API usage; WHYPER [24] makes use of app descriptions
in market to infer the purpose of permission uses; Lin et
al. [21] introduced the idea of inferring the purpose of
permission by analyzing what third-party libraries an app
uses; DroidJust [6] categorized the functionality of apps to
different states based on the output events sensed by users.

Another similar line of work is the detection of
cloned/repackaged Android apps, such as DroidMOSS [37],
DNADroid [7], or WuKong [32]. However, they are typically
more coarse-grained than feature identification, as they
mostly focus on detecting the similarity of whole apps, instead
of components within them.

In contrast to these related work, we detect the features
of Android apps based on the textual information extracted
from user interfaces, which reflects the app’s actual behavior
and cannot be obfuscated.

2.4 Redundant Operations on Devices

Redundant features often lead to redundant operations
on smartphones, especially for the features with regular
background tasks. Taking app management for an example, if
every app checks their update schedule separately, it is a big
waste of resource and energy. Apple requires all apps to be
downloaded and updated though its official App Store. While
Google recently also changed its policy to require all apps
uploaded to Google Play update themselves through Google
Play, many apps still prefer managing updates themselves.

Research has shown that redundant background tasks
could waste battery [1, 5, 22, 31], produce unwanted network
traffic [25] and leak users’ privacy [13, 36]. Although there
are a set of tools that can help kill the background tasks (task
killers), the killed background processes may restart again
and again by listening to some certain system events [11],
thus even more resources might be consumed.

Many approaches have been proposed to reduce the
resource consumption of redundant features. Some of
them [3, 5, 12, 31] focus on optimizing background network
traffic, such as grouping network traffic to save power.
TAMER [22] controls the background activities that hold
resource unnecessarily by monitoring, filtering, and rate-
limiting. DefDroid [14] considers the continuous background
behaviors in general as Disruptive App Behavior (DAB) and
implemented a system to control the behaviors. ZipDroid [26]
identifies the infrequently-used apps and disable them
automatically to save smartphone resources. Li et al. [19]
introduces a method to instrument mobile apps automatically
to save sensor-related redundant behaviors.

We will talk about mitigating methods in Section 6, where
some of these techniques will be useful.

3 FEATURE IDENTIFICATION IN
MOBILE APPS

3.1 A Taxonomy of Features

Although feature location/identfication has been studied
extensively in the community, there is no well-established
definition on exactly what is a feature, especially when we
need to determine the granularity of a feature. In this paper,
we do not attempt to solve this issue and give an exact
definition of feature. Instead, we define a set of criteria based
intuition and heuristics, which will be used when deciding
the set of features we will study in this paper. Specifically,
we chose features based on the following criteria:

• Features in our study must be widely used features
such as weather or app management, such that these
features are needed on most smartphones.

• These features may be included in apps that are not
designed for its main purposes. For example, although
many apps are not originally designed for weather,
they may include weather as an extra feature. Typical
apps fitting into this description include browsers, map
services, travel services, etc.

• The features may incur overhead or cost in resources
or battery if they are redundant. Take weather as an
example, multiple apps checking weather information
periodically will incur undesirable side-effects.

Based on these criteria, we surveyed a list of top apps and
selected the following six common feature:

• Map/location: providing mapping, navigation and
location-based services;

• Schedule: providing calendar, reminder, event man-
agement services;

268

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Y. Guo et al.

Table 1: A taxonomy of features and keywords.

Feature Keywords

map/location topo locu mapquest googlemap topo-
graph placemark zoom locat map

schedule appoint calend remind alarm event agen-
da allday weekday calendar schedule

app management uninstal download upgrad reinstal apk
manage update install

weather forecast timeweath accuweath foggi rain
weather

news feed newsfe hottest articl newslett news

email/messaging mailbox sent unread draft sender mail
trash inbox spam outbox

• App Management: providing app search, download,
update, installation service, including the update of
the app itself;

• Weather: checking and displaying weather forecast
information;

• Email/messaging services: sending and receiving
emails/messages;

• News: checking and displaying news articles or feeds.

All these six features satisfy the requirements we mentioned
above. They are common features that are needed by most
users, while their functionality requires checking remote web
services regularly or performing periodical operations. If any
of these features are redundant on a smartphone, they may
cause potential waste of valuable resources and battery.

3.2 Feature Identification Method

Identifying features and functionalities within an app is
a difficult task, even with source code available. We face
more challenges when identifying features from Android
apps because many names are obfuscated in a majority
of apps, thus it is difficult to gain enough information
through analyzing the (de-compiled) code directly. As a result,
although we have tried different methods in our attempt,
including static code analysis and machine learning on string
sets, as well as dynamic techniques involving screenshots,
none of these approaches can predict the features within
Android apps accurately.

In this paper, we propose a keyword-based method to
identify the features in Android apps. Our method is based
on the insight that the user interface (UI) of an Android app
often reflects the features within the app [18], particularly the
UI text, which is closely related to the features. Moreover,
unlike the identifier names in code which could be easily
obfuscated, the UI text, which will be presented to end users,
cannot be obfuscated. Thus our goal is to uncover the features
of an app by matching the keywords related to each feature.

3.2.1 Main Idea. The main idea of our method is
considering each app as a document with its UI text as the

content. Thus the problem of feature identification becomes
similar to extracting topics from documents.

Given an app, if a feature is included in the app, there must
exist some keywords related to that feature. For example,
if an app provides the “Weather” feature, there must exist
some keywords like “forecast”, “foggy” and “rain”, etc., which
might be used to display the weather information. Whether a
feature is included in an app can be determined according to
whether there are enough feature-related keywords appearing
in the app’s UI text.

Our method can be summarized in three steps:

(1) Extracting the UI text. We make use of existing reverse-
engineering tools to decompile Android apps and
extract the UI text. With the UI text, each app is
converted to a text document.

(2) Generating a keyword list for each specific feature. For
each feature, we manually pick one or two keywords
intuitively, and expand to more keywords based on the
UI text extracted from a large set of apps in step 1.

(3) Identifying the features within apps. With the list of
keywords for each feature generated in step 2, we
identify the features of an app by matching the keyword
list of each feature. A feature is identified in the app if
we can find enough related keywords in the app.

The process of feature identification is shown in Figure 1.
We first learn the keywords for each feature through a list of
apps downloaded from Google Play. After keyword sets are
collected, we identify features from each app by matching
the words in its UI text with the keywords we have compiled.
Next we will describe each of the steps in detail.

3.2.2 UI Text Extraction. The UI of an Android app is
mainly programmed with the XML format under the layout
directory. The strings used in the layout XML, which are the
content of views in the UI, are stored in the resource files of
the APK, and also represented in the XML format.

We make use of an existing reverse-engineering tool
apktool1 to obtain the resource files, and extract the key-
value pairs from the res/values/string.xml file, which is the
source of the app’s word set. The keys of the pairs are the
definitions of each string, which represent the developers’
perspective of the UI. The values will be presented in the
actual UI, which are what users will see. Both the keys and
values are useful text resources used in our approach.

3.2.3 Keyword Generation. We use word2vec2 in our
keyword generation phase. Given some text data as a set of
ordered word sequences, word2vec generates an N-dimension
vector for every single word in the text data, where the
vectors of words having similar meanings remain closer in
the N-dimension space. Based on the vector set, we build a
most-similar keyword set starting from one or two words.

Similarly, we can generate a keyword set for each specific
feature. First we extract the string key-value pairs from
the decoded files (res/values/string.xml) of over 13,000 apk

1https://github.com/iBotPeaches/Apktool
2https://github.com/danielfrg/word2vec

269

Understanding Feature Redundancy in Mobile Apps ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

13,000 Popular
Apps from

Google Play

Any App to be
Searched for

Features

4 Million
String Key-Value

Pairs

String Key-Value
Pairs

App’s
Wordset

Ordered
Word

Sequences

Feature
Keyword

Sets

Feature
Identification

Result

word2vec
Training

Breaking
and

Cleaning

Breaking
and

Cleaning

Extracting
string.xml

Extracting
string.xml

Keyword
Intersection

Keyword Extraction (Learning)

Feature Identification (Predicting)

Figure 1: The process of feature identification.

files from Google Play (which were crawled during our
previous work [18]) as the set of ordered word sequences.
Next, we perform some cleaning to the sequence set, such as
breaking down the identifiers with camel case and underscore-
connected naming to a word list, filtering out stop-words and
words with lower tf-idf, stemming, etc. Then we put the
sequence set as the training data into word2vec.

Next, for each specific feature, we intuitively pick one or
two words as the starting keyword set, then get a larger
keyword set using word2vec. Finally, we manually removed
some common words from the keyword sets because some of
them hardly represent any meaningful features. The resulting
keywords for each feature are listed in Table 1.

3.2.4 Feature Identification. To identify features in an app,
we first extract a word set from the UI text, and perform
the cleaning similar to the keyword generation phase. Then
for each feature, we find the words appearing both in the
feature’s keyword set and the app’s word set. A feature is
found in an app only when the number of matched keywords
is greater than a threshold, which is heuristically set as 3,
based on our manual examination on some top apps.

3.3 Experimental Setup

We have downloaded a list of popular apps to evaluate the
feature identification method. The apps are downloaded from
two app stores: the official Google Play market and a popular
third-party market CoolAPK3. We downloaded more than
2,000 apps from each market and use a list of around 4,000
apps in our study after identical apps are removed based on
their package names.

The statistics of these apps are shown in Table 2. Note
that during the evaluation process, we have used a different
set of apps from the list of apps used to build the keyword
list. Besides Google Play, we also included about 2,000 apps
from a popular app market in China, because the users in
our user study (Section 4) are mainly from China.

3http://coolapk.com

Table 2: The number of apps used in our study.

App Market # of Apps Description

Google Play 2127 Most popular Android apps
from different categories.

Cool APK 2169 Top downloaded Android
apps based on market rank-
ings.

Total 4059 Note that duplicated apps
from two stores are removed.

249 (6.1%)

911 (22.4%)

723 (17.8%)

475 (11.7%)

207 (5.1%)

661 (16.3%)

0
100
200
300
400
500
600
700
800
900

1000

map/
location

schedule app
manage

weather news email/
messaging

of

 A
PK

s

Figure 2: The number of apps detected with each
feature from 4,059 apps.

3.4 Results and Analysis

We run the feature identification method on all 4,000 apps
and get the list of features detected in each app. The results
are shown in Figure 2.

Overall, we have detected that over 22% of apps contain
the “schedule” feature, while almost 17% of apps contain
the “app management” feature. “Weather” is also a popular
feature in about 12% of the apps, while “news” only resides
in about 5% of all the apps. In total, we detected more than
3,200 features, averaging about 0.8 features for each app.

3.4.1 Accuracy. We evaluate the accuracy of the feature
detection method through manually confirming each and
every feature detected using our method. Because it is

270

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Y. Guo et al.

map/location
schedule

app manage
weather

news
email/messaging

cn
.w

ps
.m

of
fic

e_
en

g
co

m
.a

do
be

.r
ea

de
r

co
m

.a
nd

ro
id

.c
hr

om
e

co
m

.a
ut

on
av

i.m
in

im
ap

co
m

.b
ai

du
.B

ai
du

M
ap

co
m

.b
ai

du
.in

pu
t

co
m

.b
ai

du
.n

et
di

sk
co

m
.c

le
an

m
as

te
r.

m
gu

ar
d

m
ob

op
la

ye
r.

an
dr

oi
d.

ni
l

co
m

.c
oo

la
pk

.m
ar

ke
t

co
m

.d
ro

pb
ox

.a
nd

ro
id

co
m

.d
uo

w
an

.m
ob

ile
co

m
.e

st
ro

ng
s.

an
dr

oi
d.

po
p

co
m

.e
ve

rn
ot

e
co

m
.fa

ce
bo

ok
.k

at
an

a
co

m
.g

oo
gl

e.
an

dr
oi

d.
ap

ps
.m

ap
s

co
m

.g
oo

gl
e.

an
dr

oi
d.

gm
in

pu
tm

et
ho

d.
pi

ny
in

co
m

.g
oo

gl
e.

an
dr

oi
d.

yo
ut

ub
e

co
m

.h
ax

or
co

m
.if

ly
te

k.
in

pu
tm

et
ho

d
co

m
.im

m
om

o.
m

om
o

co
m

.in
st

ag
ra

m
.a

nd
ro

id
co

m
.k

ug
ou

.a
nd

ro
id

co
m

.la
nt

ea
ns

tu
di

o.
co

m
pa

ss
co

m
.lb

e.
se

cu
ri

ty
co

m
.m

ei
tu

.m
ei

ya
nc

am
er

a
co

m
.m

oj
i.m

jw
ea

th
er

co
m

.m
xt

ec
h.

vi
de

op
la

ye
r.

ad
co

m
.n

et
ea

se
.c

lo
ud

m
us

ic
co

m
.n

et
ea

se
.n

ew
sr

ea
de

r.
ac

tiv
ity

co
m

.q
q.

re
ad

er
co

m
.s

an
ku

ai
.m

ei
tu

an
co

m
.s

in
a.

ne
w

s
co

m
.s

in
a.

w
ei

bo
co

m
.s

ky
pe

.r
ai

de
r

co
m

.s
oh

u.
in

pu
tm

et
ho

d.
so

go
u

co
m

.ta
ob

ao
.ta

ob
ao

co
m

.te
nc

en
t.m

m
co

m
.te

nc
en

t.m
ob

ile
qq

co
m

.te
nc

en
t.q

ql
iv

e
co

m
.te

sl
ac

oi
ls

w
.la

un
ch

er
co

m
.tw

itt
er

.a
nd

ro
id

co
m

.U
C

M
ob

ile
co

m
.w

ha
ts

ap
p

co
m

.y
ou

da
o.

di
ct

co
m

.y
ou

ku
.p

ho
ne

co
m

.z
hi

hu
.a

nd
ro

id
si

na
.m

ob
ile

.ti
an

qi
to

ng
tv

.d
an

m
ak

u.
bi

li

Fe
at

ur
e

 for true positive for false positive

Figure 3: Feature identification accuracy for 50 popular apps. All feature identified within each app is shown
above and we also indicate each correct (�) and incorrect (�) features.

Table 3: Detection precision for each feature.

Feature True Pos. False Pos. Precision

map/location 10 1 90.9%
schedule 17 0 100.0%
app manage 23 4 85.2%
weather 9 2 81.8%
news 8 0 100.0%
email/messaging 17 3 85.0%

Average 84 10 89.4%

impossible to know the exact number of features within
each app, we only evaluate the precision of our detection
algorithm, leaving recall as future work.

We have evaluated the feature identification results for 50
popular apps based on the download statistics from CoolAPK
manually. For each feature detected in an app, if there is
any doubt whether the feature actually resides in the app,
we check the data manually, then confirm whether it is a
correct detection based on reading app description, running
the app manually and checking the reasons why it is detected
(whether the keywords are used for other purposes).

The evaluation results are shown in Figure 3. We show for
each app all the features detected and whether it is correct or
incorrect. We also summarize the overall detection accuracy
data in Table 3. For all the 94 features identified from these
50 apps, 89% of them are correctly identified. Our detection
algorithm is perfect on “schedule” and “news”, while only
have a 82% precision on detecting the “weather” feature.

Although the detection accuracy still has space to improve,
we believe it is accurate enough, thus can be used to examine
the extent of feature redundancy effectively.

3.4.2 Number of Features in Each App. When we look
at individual apps, Facebook, Sina Weibo and CleanMaster
have five features each, while many other apps include four
features. Note that although we have identified all six features
in Facebook, one of them (app management) is incorrect.

Figure 4 shows the distribution of the number of features
detected in each app for all of 4,059 apps. We did not detect

���

���

���

���

���

��	

�
 � � � � �

�
��

��
���
��

����������������������

Figure 4: Distribution of the number of features
detected in each app.

any of the six feature from just over 50% of the studied apps.
Almost 22% of all the apps (900 apps) contain more than
two features, while about 4% of the apps (150 apps) contain
more than four features.

3.4.3 Feature Overlapping. We then examine how features
overlap with each other in Table 4. For all apps detected with
each feature (in each column), we show how many of other
feature (in each row) can be detected in these apps.

Overall, the overlapping rate ranges from 10% to 49% for
any pair of the six features. Take weather as an example, for
all 475 apps containing the weather feature, 215 (45.3%) of
them contain “schedule”, while 140 (29.5%) of them contain
“app management”.

Some of the features overlap heavily with each other.
For example, “schedule” has a high overlapping rate with
“email/messaging”, and vice versa. In contrast, “news”
and “map/locatin” has a very low correlation, with their
overlapping rate lower than 15% in both directions.

4 UNDERSTANDING FEATURE
REDUNDANCY

With the list of features identified from over 4,000 popular
apps, we then study how these features distribute on the
apps installed on smartphones used by real users.

271

Understanding Feature Redundancy in Mobile Apps ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 4: The number (and percentage) of apps overlapping with other apps. Each cell shows the number (and
percentage) of each feature (in each column) in the apps containing another feature (in each row).

map/location schedule app manage weather news email/messaging

map/location 249 (100%) 109 (12.0%) 93 (12.9%) 84 (17.7%) 29 (14.0%) 84 (12.7%)
schedule 109 (43.8%) 911 (100%) 245 (33.9%) 215 (45.3%) 97 (46.9%) 321 (48.6%)

app manage 93 (37.3%) 245 (26.9%) 723 (100%) 140 (29.5%) 61 (29.5%) 237 (35.9%)
weather 84 (33.7%) 215 (23.6%) 140 (19.4%) 475 (100%) 46 (22.2%) 108 (16.3%)
news 29 (11.6%) 97 (10.6%) 61 (8.4%) 46 (9.7%) 207 (100%) 95 (14.4%)

email/messaging 84 (33.7%) 321 (35.2%) 237 (32.8%) 108 (22.7%) 95 (45.9%) 661 (100%)

Table 5: The different sets of users in our study.

Set #Users Types Description

A 600,000 used Users randomly taken from the stats
of a popular app market

B 60,000 used Top 10% of the users in Set A
according to the number of apps used

C 87 installed App lists collected from recruited
volunteers

4.1 Experimental Setup

4.1.1 Datasets. We use three sets of data in our study:

• Set A. One set of data is from a popular Android app
market4, which includes the list of apps used by each
smartphone user during the period of one week. The
data includes used app lists from 600,000 users.

• Set B. Heavy users from Set A. Because many users
may not use many apps within one particular week,
while users typically use fewer apps than the installed
apps on their phones, we choose the top 10% of the
users in the first dataset as the heavy users and study
the extent of feature redundancy on these users. The
dataset consists of 60,000 users and we expect that
they can represent the typical heavy users with higher
redundancy than Set A.

• Set C. Another set of data is collected with a simple
Android app retrieving the list of apps installed
on a smartphone, which was designed by ourselves.
The users we recruited are mostly volunteers from
universities. Most of them are college or graduate
students, such that they know basic information on app
features and are thus capable of answering a simple
survey on whether these features are necessary for
each app. We have recruited 87 volunteers who have
returned valid app lists in this dataset.

Table 5 shows the details of the three sets of users. Note
that there is one key difference between Set A/B and Set
C: the first two datasets include only those apps used by
each user during a certain period, which are fewer than the
apps actually installed on the devices. Thus we use the third
dataset to represent all the apps installed on each phone in

4http://www.wandoujia.com. All user identities are anonymized and
appropriate measures are enforced to protect user privacy.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450 500
Pr

ob
ab

ili
ty

of APKs
Set A Set B Set C

Figure 5: The distribution of the number of apps in
each dataset.

the real world. Although the scale of the third dataset is
pretty small, it will shed us insights on the scenario in reality.

4.1.2 Dataset Comparison. Figure 5 shows the difference
in three datasets. In Set A, we can see that about half of
the users have used fewer than 50 apps, while 90% of the
users have used fewer than 90 apps during the period. In
comparison, 90% of all users from Set C have installed more
than 150 apps (many of them are pre-installed apps by the
phone manufacturer), while 10% of the users have installed
more than 350 apps!

Although the number in Set A is much lower than the
statistics in Set C, the apps used by the users are typically
popular apps. Many apps installed on smartphones may never
be used, but they may contain redundant features and cause
undesirable side-effects as well.

Set B was taken from the top 10% of the users in Set A,
so all users in Set B have used at least 90 apps. Although
we cannot retrieve a large number of installed app lists from
real users, we expect that users in Set B can closely emulate
a large set of installed apps from real users as in Set C.

4.2 Redundancy Calculation

In order to examine whether there are redundant features on a
smartphone, we compare the list of apps on each smartphone
with the list of 4,000 apps we have already studied in the
last section. For each user, we record the features identified
in all the apps matching the list of apps in our repository.
We then count for each feature, how many of them can be
found on every smartphone. If more than two apps contain

272

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Y. Guo et al.

Table 6: Distribution of the number of features on
each smartphone.

Feature Set A Set B Set C

map/location 1.13 3.65 3.80
schedule 2.38 5.96 7.70
app manage 5.19 11.80 12.02
weather 2.07 4.63 4.82
news 1.48 3.63 2.40
email/messaging 2.75 7.05 8.47

Average 2.50 6.12 6.54

the same feature on one smartphone, then we have found a
case of redundancy.

Because we do not rerun the feature identification
algorithm for the dataset, we cannot identify features from
apps other than the 4,000 apps we have already examined.
As a result, the extent of redundancy in our study results
might be slightly lower than the actual redundancy because
we have not counted all the apps on a smartphone, instead
only a subset of popular apps.

4.3 Results and Analysis

4.3.1 Overall Results. Table 6 shows for each feature, the
average number of apps containing that feature found for all
users in each dataset.

For all datasets, we can see that “app management” is
the most redundant feature, averaging between 5 to 12 in
the three datasets. The reason is because that Android apps
installed from third-party markets or even the app’s own
websites typically check updates themselves. For one extreme
case, we found over 100 apps containing app management
features on a single smartphone.

“Weather” can be found on an average 2 to 5 apps on each
smartphone, which is consistent with our intuition. “News”
and “map/location” are the least popular among the six
features across all the three datasets. However, these two
features can also be sometimes very redundant on many
smartphones, as we will show later.

When comparing the three datasets, because Set A includes
only the list of apps used by the users during a certain
period, instead of all the apps installed, the extent of feature
redundancy is much lower compared to real world scenarios
in Set C. However, when we choose the top 10% heavy users
from Set A (to form Set B), the extent of redundancy is very
close to the level of redundancy in Set C.

Table 7 shows the number of users with different numbers
of redundant features from the three datasets. More than 85%
of users from Set A contain at least one redundant feature on
their phones, while all but one user (more than 98%) from
Set C contain at least one redundant feature. Almost all users
from Set B contain feature redundancy: it is not surprising
because the users are top users selected from Set A.

More than 71% of all users from Set A contain multiple
redundant features, while almost 18% of users contain all six
redundant features. For Set C, 88% of all users contain more

Table 7: The number of users with different number
of redundant features.

of Redundant Features Set A Set B Set C

0 97,460 20 1
1 74,223 173 1
2 71,032 560 0
3 75,019 1,269 0
4 86,018 3,759 8
5 88,491 11,501 24
6 107,757 42,718 53

Total 600,000 60,000 87

than five redundant features, while 61% of all users contain
all six redundant features. When we consider only users with
five or six redundant features, Set B has similar distribution
to Set C, with 71% of user with six redundant features and
88% with five or more redundant features.

4.3.2 Feature Distribution. Figure 6 shows the detailed
distribution of each feature for the three datasets. All figures
shown here are cumulative distribution functions (CDF)
according to the number of features on each smartphone.

“App management” is obviously the most redundant
feature, with more than 20% of the users from Set C
having more than 16 apps with “app management” functions.
“Schedule” and “email/messaging” are closely behind, with
more than 20% of the users from Set C having more than 12
redundant apps with each feature. The other three features
are less redundant, but still having 20% of the users with
more than 5 apps for each feature.

When we compare the difference between different sets,
users from Set A obviously having the least redundancy for all
six features. However, comparing Set B and Set C seems very
interesting. Although Set B and Set C are very close in their
redundancy distribution, there are some obvious differences
in particular cases.

When we look at the features including “map/location”,
“app management” and “weather”, their distributions are
almost the same for Set B and C. For “schedule” and
“email/message”, the redundancy in Set C is obviously higher
than in Set B, which indicates that many scheduling or
messaging apps are not used very often. In contrast, the
redundancy in “news” for Set B is higher than in Set C,
which is counter-intuitive, but can be explained as well: (1)
news apps installed on a smartphone are frequently used; or
(2) fewer news apps are pre-installed by manufacturers.

5 USER SURVEY

After we identified the features on mobile apps, we then
perform a simple user survey, asking each user to indicate
which features they think are unnecessary for each app. We
ask each user to provide their opinion on at most 10 apps.

Figure 7 shows two screenshots from the survey app. We
first show the redundancy detection results, listing apps for
each redundant feature. Then we ask the user to answer
which features they deem as unnecessary, chosen from a list

273

Understanding Feature Redundancy in Mobile Apps ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13 15 17 19 21

Pr
ob

ab
ili

ty

of APKs
Set A Set B Set C

(a) map/location

0
0.2
0.4
0.6
0.8

1

1 6 11 16 21 26 31 36

Pr
ob

ab
ili

ty

of APKs
Set A Set B Set C

(b) schedule

0
0.2
0.4
0.6
0.8

1

1 6 11 16 21 26 31 36 41

Pr
ob

ab
ili

ty

of APKs
Set A Set B Set C

(c) app management

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13 15 17 19 21 23

Pr
ob

ab
ili

ty

of APKs
Set A Set B Set C

(d) weather

0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13
Pr

ob
ab

ili
ty

of APKs
Set A Set B Set C

(e) news

0
0.2
0.4
0.6
0.8

1

1 6 11 16 21 26 31 36 41

Pr
ob

ab
ili

ty

of APKs
Set A Set B Set C

(f) email/messaging

Figure 6: Distribution of redundancy for each feature in different datasets.

Figure 7: Screenshots of the redundancy report
result page and the survey questions.

of features identified for popular apps. The features used in
the survey are mostly top apps shown in Figure 3, where
incorrect predictions are removed to improve the credibility
of the survey.

The survey results are shown in Table 8, which shows the
number of features listed in the questions and the number
of features indicated as unnecessary. Overall, out of 1,336
features surveyed, users selected about 45% of them as
unnecessary. For features such as “schedule”, about 65%
of the occurrences are deemed as unnecessary by users, while
for “map/location”, only 16% are considered as unnecessary.

The user responses confirms our speculation on the extent
of redundancy existing on real smartphones. About half
of the features we studied on smartphones are considered

Table 8: Results from user survey, showing the
number of features users selected as unnecessary.

Feature # Asked # Selected %

map/location 188 30 16.0%
schedule 302 196 64.9%
app manage 386 220 57.0%
weather 109 38 34.9%
news 116 59 50.9%
email/messaging 235 122 51.9%

Total 1,336 665 45.9%

as redundant by users, especially those features involving
scheduling, app management, email/messaging, and news
services. Many users are surprised to find out that there are
so much redundancy on their smartphones and suggest that
these redundant features should be removed or consolidated.

6 DISCUSSIONS

6.1 Threats to Validity

Feature definition. As mentioned earlier, it is difficult to
define what exactly is a feature. We did not attempt to
give a definition, instead we compile a list of six common
functionalities that we believe are important features, and
studied them in popular Android apps. Some of these features
are obvious, such as checking weather or app management.
However, some of them are not so obvious. For example,
“map/location” is probably too general as it covers many
different functionalities in mobile apps. We realize this might
be an issue and hope to clarify these in future study.

Feature detection algorithms. We understand there
are limitations in the simple keyword-based method used in
feature detection. However, we have tried many other feature
detection methods that involve both static analysis and
dynamic analysis, non of them have produced better results

274

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Y. Guo et al.

than our current approach. As a matter of fact, we believe
accurate feature location in software is still an unsolved issue,
which requires more attention in our community.

Dynamic features. During feature identification, we can
only detect features residing in UIs written in static code.
However, many mobile apps nowadays are loaded dynamically
or relying on WebView or HTML5. For example, we did
not find any of our features from a popular messaging app
WeChat, because most of its features are dynamically loaded
during runtime. Many other apps load their main features
from web servers. In order to detect features from these apps,
we need to incorporate dynamic analysis techniques in the
process, using tools such as Monkey or DroidBot [20].

6.2 False Redundancy

Even though we can identify that multiple occurrences of
the same feature reside on one smartphone, it is sometimes
difficult to tell whether these features are really “true”
redundancy. Take weather as an instance, users might
intentionally install multiple weather apps for special
purposes. For example, people living in extreme climates
or professional surfers or mountain climbers may in fact
check many different weather apps on a regular basis.

This issue brings two implications: (1) Not all redundancies
are bad or undesired redundancies. As indicated from our
user survey, around 45% of the redundancies we have found
are “true” redundancies from the users’ perspective. (2) We
need to find a way to distinguish between true redundancies
and false redundancies, which needs further study.

6.3 Side-Effects of Feature Redundancy

Feature redundancy on a smartphone may bring many
undesired side-effects, including occupying extra resources,
wasting network traffic and consuming battery, etc.

Take weather forecast as an example, besides extreme
cases, users usually only check weather information from the
same app or widget, no matter how many apps check weather
regularly. Thus checking weather forecast is a typical “true”
redundancy, which not only wastes network data and power,
but provides absolutely no valuable information.

Other redundant features such as app management and
news services also involve wasted CPU and battery. In this
paper, we did not calculate the wasted battery for each case,
but it may be possible to do so once we understand the extent
and frequency of the redundant operations.

6.4 Redundancy Elimination

As more and more apps are developed, we expect that the
extent of feature redundancy is going to become worse in the
future. Thus we need to consider remedy solutions to the
feature redundancy problem.

Although it is recommended that users should remove
those bloatware that are useless and merely wasting memory
and other resources, many apps on smartphones are still
useful apps, but they have been injected too many unwanted
features. Simply uninstalling these apps is a straightforward,

but no so effective, solution, as finding replacement for their
main features are not always possible.

There are two types of redundancy: unnecessary features
such as checking weather information, or scattered features
such as app management and messaging services. Different
redundant features may need different types of treatment. For
example, unnecessary features such as weather information
are mostly “true” redundancy and we typically only need to
keep one weather forecast service on a smartphone.

Redundant features such as app management are different.
We may need to manage and update each and every app on
the phone, but we do not want each app to check for their own
updates or even updates for all apps. One possible solution
to this issue is feature consolidation, where we have a central
service to control the update of all apps on a smartphone.
Although Google recently requires all apps installed from
Google Play can only update themselves through Google
Play, it does not require apps installed from other parties to
do the same. One we consolidate the feature in one single
service, it will eliminate the extra checks, saving valuable
network data and battery power as well.

For services such as email/messaging, it is a bit more
complicated. We do not need multiple apps to check new
emails from the same accounts, however messaging services
are provided through different apps and their proprietary
services. In the latter case, social network apps are one of the
biggest power consumers on a smartphone. Even it is difficult
to consolidate these services, it is still possible to apply power
saving techniques such as network traffic delay [3, 5, 12],
which can group all non-emergent network accesses to save
network connection energy.

7 CONCLUDING REMARKS

This paper raises the issue of feature redundancy in mobile
apps installed on a smartphone. With a feature identification
method that is able to uncover common features from
popular apps with a high accuracy, we studied the extent of
feature redundancy in a large-scale dataset. Experimental
results show that feature redundancy is prevalent on real
smartphones, with more than 85% of them containing some
kind of feature redundancy. Some common features such
as “app management” are redundant by a dozen times on
average. For the six common features we studied, all of them
are redundant on at least half of the smartphones. User survey
shows that about half of the redundant feature are indicated
as unnecessary by smartphone users.

Our work represents the first step to understand feature
redundancy on smartphones. We will investigate the issues
and implications further in our future work and hope it will
benefit both mobile users and app developers, while helping
contribute towards a better mobile app ecosystem.

ACKNOWLEDGMENT

This work was partly supported by the National Key Research
and Development Program (2017YFB1001904) and the
National Natural Science Foundation of China (61772042).

275

Understanding Feature Redundancy in Mobile Apps ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun

Venkataramani. 2009. Energy consumption in mobile phones: a
measurement study and implications for network applications. In
Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference. ACM, 280–293.

[2] Pierre F Baldi, Cristina V Lopes, Erik J Linstead, and Sushil K
Bajracharya. 2008. A theory of aspects as latent topics. In ACM
Sigplan Notices, Vol. 43. ACM, 543–562.

[3] Abhijnan Chakraborty, Vishnu Navda, Venkata N Padmanabhan,
and Ramachandran Ramjee. 2013. Coordinating cellular
background transfers using loadsense. In Proceedings of the
19th annual international conference on Mobile computing &
networking. ACM, 63–74.

[4] Kunrong Chen and Václav Rajlich. 2000. Case study of feature
location using dependence graph. In Program Comprehension,
2000. Proceedings. IWPC 2000. 8th International Workshop on.
IEEE, 241–247.

[5] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Yu Charlie Hu,
Maruti Gupta, and Rath Vannithamby. 2015. Smartphone
background activities in the wild: Origin, energy drain, and
optimization. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking. ACM, 40–52.

[6] Xin Chen and Sencun Zhu. 2015. DroidJust: automated
functionality-aware privacy leakage analysis for Android applica-
tions. In Proceedings of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks. ACM, 5.

[7] Jonathan Crussell, Clint Gibler, and Hao Chen. 2012. Attack of
the Clones: Detecting Cloned Applications on Android Markets.
In Computer Security – ESORICS 2012, Sara Foresti, Moti Yung,
and Fabio Martinelli (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 37–54.

[8] Android Developers. 2013. Intent. https://developer.android.com/
reference/android/content/Intent.html. (2013).

[9] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys
Poshyvanyk. 2013. Feature location in source code: a taxonomy
and survey. Journal of software: Evolution and Process 25, 1
(2013), 53–95.

[10] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. 2003.
Locating features in source code. IEEE Transactions on software
engineering 29, 3 (2003), 210–224.

[11] Whitson Gordon. 2014. Android Task Killers Explained:
What They Do and Why You Shouldnt Use Them.
http://lifehacker.com/5650894/android-task-killers-e xplained-
what-they-do-and-why-you-shouldnt-use-them. (2014).

[12] Junxian Huang, Feng Qian, Z Morley Mao, Subhabrata Sen, and
Oliver Spatscheck. 2012. Screen-off traffic characterization and
optimization in 3G/4G networks. In Proceedings of the 2012
ACM conference on Internet measurement conference. ACM,
357–364.

[13] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and
Bin Liang. 2014. AsDroid: Detecting Stealthy Behaviors
in Android Applications by User Interface and Program
Behavior Contradiction. In Proceedings of the 36th International
Conference on Software Engineering (ICSE 2014). 1036–1046.

[14] Peng Huang, Tianyin Xu, Xinxin Jin, and Yuanyuan Zhou.
2016. DefDroid: Towards a More Defensive Mobile OS Against
Disruptive App Behavior. In MobiSys. ACM, 221–234.

[15] Tetsuya Kanda, Yuki Manabe, Takashi Ishio, Makoto Matsushita,
and Katsuro Inoue. 2013. Semi-automatically extracting
features from source code of android applications. IEICE
TRANSACTIONS on Information and Systems 96, 12 (2013),
2857–2859.

[16] Shinji Kawaguchi, Pankaj K Garg, Makoto Matsushita, and
Katsuro Inoue. 2006. Mudablue: An automatic categorization
system for open source repositories. Journal of Systems and
Software 79, 7 (2006), 939–953.

[17] Adrian Kuhn, Stéphane Ducasse, and Tudor Gı́rba. 2007. Semantic
clustering: Identifying topics in source code. Information and
Software Technology 49, 3 (2007), 230–243.

[18] Yuanchun Li, Yao Guo, and Xiangqun Chen. 2016. PERUIM:
Understanding Mobile Application Privacy with permission-UI
Mapping. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp
’16). 682–693.

[19] Yuanchun Li, Yao Guo, Junjun Kong, and Xiangqun Chen. 2015.
Fixing Sensor-Related Energy Bugs through Automated Sensing

Policy Instrumentation. In ACM/IEEE International Symposium
on Low-Power Electronics and Design (ISLPED 2015). 321–326.

[20] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017.
DroidBot: A Lightweight UI-guided Test Input Generator for
Android. In Proceedings of the 39th International Conference
on Software Engineering Companion (ICSE-C ’17). 23–26.

[21] Jialiu Lin, Shahriyar Amini, Jason I Hong, Norman Sadeh, Janne
Lindqvist, and Joy Zhang. 2012. Expectation and purpose:
understanding users’ mental models of mobile app privacy through
crowdsourcing. In Proceedings of the 2012 ACM Conference on
Ubiquitous Computing. ACM, 501–510.

[22] Marcelo Martins, Justin Cappos, and Rodrigo Fonseca. 2015.
Selectively taming background android apps to improve battery
lifetime. In 2015 USENIX Annual Technical Conference
(USENIX ATC 15). 563–575.

[23] Girish Maskeri, Santonu Sarkar, and Kenneth Heafield. 2008.
Mining business topics in source code using latent dirichlet
allocation. In Proceedings of the 1st India software engineering
conference. ACM, 113–120.

[24] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao
Xie. 2013. Whyper: Towards automating risk assessment of mobile
applications. In Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13). 527–542.

[25] Julia Rubin, Michael I. Gordon, Nguyen Nguyen, and Martin
Rinard. 2015. Covert Communication in Mobile Applications.
In 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE.

[26] Indrajeet Singh, Srikanth V Krishnamurthy, Harsha V Mad-
hyastha, and Iulian Neamtiu. 2015. ZapDroid: managing
infrequently used applications on smartphones. In Proceedings
of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing. ACM, 1185–1196.

[27] Steven Sinofsky. 2013. Avoiding mobile app bloat.
https://blog.learningbyshipping.com/2013/09/24/avoiding-
mobile-app-bloat/. (2013).

[28] Statista. 2018. Number of Apps in the Google Play
Store. https://www.statista.com/statistics/266210/
number-of-available-applications-in-the-google-play-store/.
(2018). Accessed: 2018-02-06.

[29] TheNextWeb. 2014. Android users have an average of 95
apps installed on their phones, according to Yahoo Aviate
data. http://thenextweb.com/apps/2014/08/26/android-users-
average-95-apps-installed-phones-according-yahoo-aviate-data/.
(2014).

[30] Kai Tian, Meghan Revelle, and Denys Poshyvanyk. 2009. Using
latent dirichlet allocation for automatic categorization of software.
In 2009 6th IEEE International Working Conference on Mining
Software Repositories. IEEE, 163–166.

[31] Chengke Wang, Yao Guo, Yunnan Xu, Peng Shen, and Xiangqun
Chen. 2016. Standby Energy Analysis and Optimization for
Smartphones. In IEEE MobileCloud 2016.

[32] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. 2015.
WuKong: A Scalable and Accurate Two-Phase Approach to
Android App Clone Detection. In Proceedings of the ACM
International Symposium on Software Testing and Analysis
(ISSTA ’15). ACM, 71–82.

[33] Wikipedia. 2018. Google Play. https://en.wikipedia.org/wiki/
Google Play. (2018). Accessed: 2018-02-06.

[34] Wikipedia. 2018. Software bloat. https://en.wikipedia.org/wiki/
Software bloat. (2018). Accessed: 2018-02-06.

[35] Norman Wilde and Michael C Scully. 1995. Software
reconnaissance: Mapping program features to code. Journal of
Software: Evolution and Process 7, 1 (1995), 49–62.

[36] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning,
and X Sean Wang. 2013. Appintent: Analyzing sensitive
data transmission in android for privacy leakage detection. In
Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. ACM, 1043–1054.

[37] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012.
Detecting Repackaged Smartphone Applications in Third-party
Android Marketplaces. In Proceedings of the Second ACM
Conference on Data and Application Security and Privacy
(CODASPY ’12). 317–326.

276

