
TUTEL: ADAPTIVE MIXTURE-OF-EXPERTS AT SCALE

Changho Hwang * 1 Wei Cui * 1 Yifan Xiong * 1 Ziyue Yang * 1 Ze Liu 1 Han Hu 1 Zilong Wang 2 Rafael Salas 2

Jithin Jose 2 Prabhat Ram 2 Joe Chau 2 Peng Cheng 1 Fan Yang 1 Mao Yang 1 Yongqiang Xiong 1

ABSTRACT
Sparsely-gated mixture-of-experts (MoE) has been widely adopted to scale deep learning models to trillion-
plus parameters with fixed computational cost. The algorithmic performance of MoE relies on its token routing
mechanism that forwards each input token to the right sub-models or experts. While token routing dynamically
determines the amount of expert workload at runtime, existing systems suffer inefficient computation due to their
static execution, namely static parallelism and pipelining, which does not adapt to the dynamic workload.

We present TUTEL, a highly scalable stack design and implementation for MoE with dynamically adaptive par-
allelism and pipelining. TUTEL designs an identical layout for distributing MoE model parameters and input
data, which can be leveraged by switchable parallelism and dynamic pipelining methods without mathematical
inequivalence or tensor migration overhead. This enables adaptive parallelism/pipelining optimization at zero
cost during runtime. Based on this key design, TUTEL also implements various MoE acceleration techniques
including Flexible All-to-All, two-dimensional hierarchical (2DH) All-to-All, fast encode/decode, etc. Aggre-
gating all techniques, TUTEL finally delivers 4.96× and 5.75× speedup of a single MoE layer over 16 and 2,048
A100 GPUs, respectively, over the previous state-of-the-art.

Our evaluation shows that TUTEL efficiently and effectively runs a real-world MoE-based model named SwinV2-
MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture. On efficiency, TUTEL
accelerates SwinV2-MoE, achieving up to 1.55× and 2.11× speedup in training and inference over Fairseq,
respectively. On effectiveness, the SwinV2-MoE model achieves superior accuracy in both pre-training and
down-stream computer vision tasks such as COCO object detection than the counterpart dense model, indicating
the readiness of TUTEL for end-to-end real-world model training and inference.

1 INTRODUCTION

In recent years, the community has found that enrolling
more model parameters is one of the most straight-forward
but less sophisticated way to improve the performance of
deep learning (DL) algorithms (Kaplan et al., 2020). How-
ever, model capacity is often limited by computing re-
source and energy cost (Sharir et al., 2020). To tackle this,
sparsely-gated Mixture-of-Experts (MoE) (Shazeer et al.,
2017) introduces a sparse architecture by employing mul-
tiple parallel sub-models called experts, where each input
is only forwarded to a few experts based on an intelligent
gating function. Unlike dense layers, this method scales
the model capacity up at only sublinearly increasing com-
putational cost. Nowadays, MoE is one of the most popu-
lar approaches demonstrated to scale DNNs to trillion-plus
parameters (Fedus et al., 2022), paving the way for models
capable of learning even more information.

*Equal contribution 1Microsoft Research 2Microsoft. Corre-
spondence to: Yongqiang Xiong <yqx@microsoft.com>.

Proceedings of the 6 th MLSys Conference, Miami Beach, FL,
USA, 2023. Copyright 2023 by the author(s).

While MoE-based algorithms open up a huge scale-up/out
opportunity, the dynamic nature of MoE introduces fun-
damental system-side challenges that have not been seen
before in most of previous DL algorithms and systems. To
be specific, each MoE layer consists of a certain number of
parallel experts that are distributed over accelerators (GPUs
in this work), where each GPU dispatches each input data
to several best-fit experts according to an intelligent gating
function and get the corresponding outputs back to com-
bine them. This implies that the workload of experts is
fundamentally uncertain – it depends on input data and the
gating function. Both of them change at every iteration in
practice. In our experiments (see Figure 1), the workload
changes up to 4.38× in a single training and different layers
have different workload.

Previous DL systems, including the latest MoE frame-
works (Lepikhin et al., 2021; Ott et al., 2019; Rajbhandari
et al., 2022; He et al., 2022), are mostly based on static
runtime execution that does not fit dynamic MoE charac-
teristics. The major pitfall comes from that experts often
fail to leverage the best-performing parallelism because the

TUTEL: Adaptive Mixture-of-Experts at Scale

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 100 200 300 400

N
ee

d
ed

 E
x

p
er

t
C

ap
ac

it
y

Training Iteration (K)

Layer 1

Layer 4

Layer 10

1

3

5

7

9

11

13

0 100 200 300

N
ee

d
ed

 E
x

p
er

t
C

ap
ac

it
y

Training Iteration (K)

Layer 1

Layer 4

Layer 10

Figure 1. Dynamically changing workload of MoE layers during
an end-to-end training of the MoE version of Swin Transformer
V2 (Liu et al., 2021; 2022) thin-tiny (left) and base (right) mod-
els. The y-axis is the needed expert capacity at runtime, which
indicates the amount of workload (see details in Section 2.1). For
a neat view, only the 1st, 4th, and 10th layers are shown out of 10
total MoE layers in the model.

optimal one differs depending on the dynamic workload.
It is non-trivial to dynamically adjust parallelism at run-
time as it typically incurs a large redistribution overhead or
GPU memory consumption in existing systems. Other ap-
proaches such as load balancing loss (Fedus et al., 2022)
try to tackle this issue by manipulating the MoE algorithm,
but it often harms model accuracy in our experiments (see
Section 2.1).

This paper presents TUTEL, a system that thoroughly op-
timizes MoE at any scale by adaptive methods special-
ized for dynamic MoE workload. The key mechanism is
adaptive parallelism switching that dynamically switches
the parallelism strategy at every iteration without any extra
overhead of switching. Specifically, unlike existing sys-
tems that use different tensor layouts for different paral-
lelism strategies, we leverage only a single distribution lay-
out that covers all possibly optimal strategies. This frees
the system from reformatting the input data or weights
when we switch the parallelism strategy, hence zero-cost
switching. Based on our communication cost analysis of
all kinds of parallelism, we ensure that adaptive parallelism
does not compromise the optimal parallelism strategy.

TUTEL is a fully implemented framework for diverse MoE
algorithms at scale. Over the adaptive parallelism switch-
ing, it delivers several optimization techniques for effi-
cient and adaptive MoE, including adaptive pipelining,
the 2-dimensional hierarchical (2DH) All-to-All algorithm,
fast encode/decode with sparse computation on GPU, etc.
TUTEL has been open sourced on GitHub1 and already
been integrated into Fairseq (Ott et al., 2019) and Deep-
Speed (Microsoft, 2023). Our extensive experiments over
Azure A100 clusters (Azure, 2023) show that with 128
GPUs, TUTEL delivers up to 3.11× of MoE-layer speedup,
and 1.55×/ 2.11× speedup for end-to-end training / infer-
ence of a real-world model (SwinV2-MoE), compared to

1https://github.com/microsoft/tutel

GPU0

GPU1

GPU2

All-to-All

(dispatch)

Inputs Outputs

All-to-All

(combine)

𝐸0

𝐸1

𝐸2

fflayer

fflayer

fflayer

𝐺0

𝐺0

𝐺0

gating

gating

gating

Figure 2. Example of an MoE layer across three GPUs, expert
Ei on GPU i. G0 represents the gating function that is shared
across all GPUs. Different colors or patterns indicate different
samples (columns of inputs) and different gradients of color indi-
cate different tokens within a sample (rows of inputs). This ex-
ample shows two samples/batch, six tokens/sample, and evenly
dispatched top-1 routing with capacity factor 1.0 – see details in
Section 2.2.

that of using the original Fairseq. For 2,048 GPUs, the
MoE-layer speedup is further improved to 5.75×.

Our key contributions are as follows:

• Provide detailed analysis on the dynamic nature of MoE
and following challenges in existing frameworks.

• Propose adaptive parallelism switching that efficiently
handles dynamic workload of MoE, which achieves
1.35× ∼ 14.57× speedup of a single MoE layer.

• Aggregating all acceleration techniques, TUTEL delivers
speedup of MoE at any scale: 4.96× and 5.75× speedup
of a single MoE layer over 16 and 2,048 A100 GPUs,
respectively.

• TUTEL has been used to implement and run the sparse
MoE version of a state-of-the-art vision model, SwinV2-
MoE, on real-world computer vision problems. It
achieves up to 1.55× and 2.11× speedup for training
and inference, respectively, compared to previous frame-
works such as Fairseq. We also demonstrate superior ac-
curacy of the sparse model than the counterpart dense
model, indicating the readiness of TUTEL in training
real-world AI models.

2 BACKGROUND & MOTIVATION

This section introduces the dynamic nature of Mixture-of-
Experts and its inefficiency in large-scale training.

2.1 Background & Related Work

Sparsely-gated Mixture-of-Experts (MoE). MoE em-
ploys multiple expert models, which deal with their own
specialized sub-tasks respectively to solve the entire tasks
together. It is leveraged by large-scale distributed DNN
models by putting a cross-GPU layer that partially ex-
changes hidden features from different GPUs (Fedus et al.,
2022; Lin et al., 2021; Riquelme et al., 2021). Figure 2 il-

https://github.com/microsoft/tutel

TUTEL: Adaptive Mixture-of-Experts at Scale

lustrates an example. First, it runs a gating function (Lewis
et al., 2021; Roller et al., 2021; Yang et al., 2021) that
determines the destination GPU of each input token2 in
the following all-to-all collective communication (All-to-
All). After the All-to-All (called dispatch), each GPU runs
their own expert, which is a feed-forward network layer
(fflayer), and then conducts the second All-to-All (called
combine) that sends the corresponding output of each to-
ken to the GPU where the token is from. Details of the gat-
ing function and the fflayer defer depending on the model
algorithm.

MoE as the Key to Exa-scale Deep Learning. MoE is
differentiated from existing scale-up approaches for DNNs
(i.e., increasing the depth or width of DNNs) in terms of
its high cost-efficiency. Specifically, enrolling more model
parameters (experts) in MoE layers does not increase the
computational cost per token. Nowadays, MoE is consid-
ered as a key technology for hyper-scale DL with its state-
of-the-art results shown in previous works (Fedus et al.,
2022; Riquelme et al., 2021; Lepikhin et al., 2021; Du et al.,
2022). Currently, many state-of-the-art frameworks (e.g.,
DeepSpeed (Microsoft, 2023), Fairseq (Ott et al., 2019),
etc.) have already supported MoE.

Dynamic Workload of MoE. The root cause of dynamic
workload of MoE comes from its token routing mechanism.
Specifically, MoE layers dynamically route each token to
multiple experts, where the distribution of tokens is often
uneven across experts. This makes the workload of each
expert dynamically change at every iteration as shown in
Figure 1. Expert Capacity is a common practice to indi-
cate the workload of each expert, which is the number of
tokens that an expert receives to deal with. Expert capacity
depends on the number of tokens per batch T , the number
of global experts E, top-k routing (1 ≤ k ≤ E), and the
capacity factor f (f ≥ 1) as follows:

Expert Capacity = k · f · T
E
. (1)

f = 1 is the minimum value indicating the most even token
distribution. A larger f value indicates more imbalanced
token routing, which means that an expert has to deal with
more tokens.

Most existing MoE frameworks (Ott et al., 2019; Lepikhin
et al., 2021; Rajbhandari et al., 2022; Zheng et al., 2022)
simply set f to a static upper bound of capacity factor
fupper (i.e., f = fupper) so that different iterations al-
ways perform a static amount of computation. However,
static computation based on fupper not only introduces un-
necessary computations but also may drop excessive to-

2Each input sample is divided into one or more tokens, and the
definition of a token depends on the model’s algorithm and tasks.

LB Loss Weight 0.001 0.01 0.1 1.0
Acc@1 (%) 37.32 37.78 37.16 34.71

Table 1. Harsh load balancing harms MoE model accuracy. Bold
numbers highlight accuracy degradation with large LB loss
weights. All experiments are carried on ImageNet-22K image
classification and the top-1 accuracy of SwinV2-S model is re-
ported. Hyper-parameters: 32 experts, top-1 routing, capacity
factor f=infinity.

kens from training if fupper is not set to a sufficiently large
value, which potentially impacts the model accuracy. To
tackle this, throughout this paper, we consider a system
(like TUTEL) that supports MoE training using the mini-
mum required f that incurs neither unneeded computation
nor dropped tokens, as using f = fupper does. Based on
this mechanism, we explore further optimization opportu-
nities while f varying across training steps.

MoE Frameworks. While GShard (Lepikhin et al.,
2021) provides a computation logic that ensures algo-
rithmic correctness of MoE, several popular MoE frame-
works (Ott et al., 2019; Rajbhandari et al., 2022) fol-
low the same logic but perform poorly on a large scale.
Fast/FasterMoE (He et al., 2022) proposes different gat-
ing algorithms that are not computationally equivalent with
GShard. Furthermore, it proposes shadow expert and smart
schedule that deliver only conditional benefits when imbal-
anced token distribution persists for a long time, while may
harm throughput otherwise. On the other hand, TUTEL pur-
sues keeping the same computation logic as GShard and
achieving a deterministic gain over any environments in
general, which adapts MoE frameworks to exa-scale with-
out harming algorithmic results.

Load Balancing Loss. Load balancing (LB) loss regu-
lates MoE layer training by encouraging gating functions
to balance workload of experts (Shazeer et al., 2017; Fe-
dus et al., 2022). LB loss can contribute to low and sta-
ble MoE workload as capacity factor f typically decreases
when the token distribution is even (as mentioned in the
previous paragraph). However, LB loss is typically insuffi-
cient to tackle the dynamic workload of MoE because giv-
ing a large weight on the LB loss often harms model ac-
curacy. Specifically, a proper weight on the LB loss may
help model accuracy by guiding gating functions to enroll
more diverse expert parameters during training, but a too
large weight may harm the optimization objectives of the
final task, as well as lead to failure of forwarding tokens to
their knowledgeable experts. Table 1 shows that our exper-
iments with large LB loss weights harm model accuracy.
Additionally, to our empirical findings, LB loss does not
always result in more balanced workload across experts.
For example, our experiments in Figure 1 use LB loss that

TUTEL: Adaptive Mixture-of-Experts at Scale

0.9

1

1.1

1.2

1.3

0.5 1 2 4

T
h

ro
u

g
h

p
u

t
R

at
io

Capacity Factor f

Top-1

Top-2

Top-3

Top-4

Figure 3. Runtime preferences of two different parallelism meth-
ods. The Y-axis measures the throughput ratio of EP+MP to
EP+DP. It compares their throughput under varying capacity fac-
tor f (i.e., varying amount of workload) and different top-k
configurations, where > 1.0 implies that EP+MP outperforms
EP+DP, and vice versa. Model settings: fflayer hidden size 16K,
fflayer channel size 2048, and batch size 4.

GPU0

𝐸0
0 𝐸1

0

GPU1

𝐸0
1 𝐸1

1

GPU2

𝐸0
2 𝐸1

2

GPU3

𝐸0
3 𝐸1

3

MP

GPU0

𝐸0

GPU1

𝐸0

GPU2

𝐸1

GPU3

𝐸1

EP+DP

parameter
migration

DP group
instance

sub-gradient sub-gradient

Figure 4. Parameter migration due to switching parallelism be-
tween conventional EP+DP and MP. Ep

i refers to p-th slice (in
the model-parallel manner) of i-th expert (no p means not sliced).
EP+DP replicates each expert on two GPUs each, and MP slices
each expert across four GPUs respectively.

help achieve the best accuracy, but it still shows dynami-
cally changing workload. In this paper, we only consider
system-side solutions that are generally applied regardless
of the LB loss.

2.2 Static Parallelism

Under the dynamic nature of MoE layers, it becomes chal-
lenging if we would like to accelerate one expert with mul-
tiple GPUs for higher throughput. Previous research has
proven that employing more experts typically gains only
fast diminishing incremental benefits with many experts
(> 256) (Rajbhandari et al., 2022; Clark et al., 2022; Fe-
dus et al., 2022). Therefore, in large-scale training, MoE
layers typically employ relatively small number of experts
compared with the number of GPUs and multiple GPUs are
assigned to one expert for higher throughput.

We consider three different parallelism methods that have
been adopted for MoE in prior works (Fedus et al., 2022):
expert parallelism (EP, distribute experts), data parallelism
(DP, distribute input data), and model parallelism (MP, split
and distribute a single expert). EP, DP, and MP can be used
at the same time with each others.

Number of GPUs 16 64 256
MoE overhead (ms) 560.9 698.9 866.4

Computation overhead (ms) 371.8 375.1 386.3
All-to-All overhead (ms) 189.1 323.8 491.3
All-to-All overhead ratio 33.7% 46.3% 56.7%
Potential overhead saving 33.7% 46.3% 43.3%

Potential speedup 1.51× 1.86× 1.76×

Table 2. Ratio of All-to-All overhead and potential speedup by
fully overlapping All-to-All and computation in a typical MoE
setting. Model settings: fflayer hidden size 4K, fflayer channel
size 4K, 2 experts per GPU, 64K tokens per iteration.

According to our experiments, statically adopting a cer-
tain parallelism method does not always work efficiently
under dynamic workload. For example, Figure 3 com-
pares performance of two different parallelism methods,
EP+DP and EP+MP. As shown in the figure, the best paral-
lelism method depends on the workload, which has 7.39%-
27.76% performance gap between these two parallelisms.

Unfortunately, switching between different parallelism
methods during runtime would incur a substantial over-
head. Specifically, in existing work, an on-going training
based on a certain parallelism (e.g., data-parallel) is not
designed to be compatible with another parallelism (e.g.,
model-parallel) because they have different requirements
on data split, weight split, managing momentum of param-
eter gradients, and even the framework interfaces to launch
the training. Furthermore, parameter migration is another
costly overhead that would be incurred when we change
the parallelism, as illustrated in Figure 4. These are why
parallelism switching is hardly used in existing systems.

2.3 Static Pipelining

MoE layers shown in Figure 2 often under-utilize GPUs
as they run All-to-All and fflayer in sequence to dispatch
and combine. As All-to-All mostly consists of inter-GPU
data copies that are not compute-intensive, we can better
utilize computational power of GPUs by pipelining it with
fflayer that runs numeric computation. Table 2 shows up
to 1.86× potential speedup by overlapping All-to-All and
fflayer computation.

However, we observe that the static pipelining strategy for
dispatch and combine, namely static All-to-All algorithm
and pipelining degree, are inefficient to handle the dynamic
workload. As illustrated in Figure 5, depending on dif-
ferent MoE settings and scales, the corresponding opti-
mal pipelining strategy consists of various All-to-All al-
gorithms (Linear or 2DH3) and pipelining degrees. This

3While Linear All-to-All lets all GPUs directly communicate
with each others, 2DH (2-Dimensional Hierarchical) All-to-All
adopts a hierarchical algorithm that conducts intra-node commu-
nication in a separate earlier stage. 2DH tends to outperform Lin-

TUTEL: Adaptive Mixture-of-Experts at Scale

1 2 4 8 1 2 4 8

0

50

100

150

← Linear All-to-All → ← 2DH All-to-All →

45

135

51

5 6 1 0 0

24 25
5 1

37
24

10

117

Pipelining Degree

#
O
p
ti
m
a
l
C
o
n
fi
g
u
ra
ti
o
n

128-GPU
256-GPU

Figure 5. The distribution of optimal pipeline strategies for var-
ious MoE workload configurations. Each column indicates the
number of configurations that perform best with the strategy de-
scribed on X-axis. Details of workload configurations are the
same as described in Section 5.1.2.

Symbol Description
W World size used for All-to-All exchange
D fflayer channel size for each sample
H fflayer hidden size for each sample
Eg Number of local experts per GPU
E Number of global experts
Cg Token capacity per GPU
C The total token capacity across GPUs
P The total parameters of all experts
f The capacity factor used in Equation (1)

Table 3. Description of symbols.

means that a single static strategy cannot always achieve
the optimal performance in different MoE settings and
scales, and dynamic pipelining strategy is necessary at run-
time to adapt to varying settings.

To make things worse, the interference between computa-
tion and communication makes it difficult to find the op-
timal pipelining strategy if we only consider each single
aspect separately. This is because the slowdown from run-
ning NCCL kernels concurrently with computation kernels
on the same GPU is difficult to estimate. To our extensive
experiments, even when two different All-to-All algorithms
have similar throughputs, their throughputs often differ a
lot when the same concurrent computation kernel is intro-
duced, and either algorithm may outperform another one
case-by-case. This implies that the dynamic adjustment
should be done jointly with both computation and commu-
nication for the optimal overall throughput.

3 ADAPTIVE MOE WITH TUTEL

TUTEL, a full-stack MoE system, supports a complete MoE
layer with adaptive optimizations. As all optimizations are
transparent to DNN model developers, TUTEL would not

ear on a larger scale, and vice versa. See details in Appendix A.

change the interface of DL frameworks and it can easily be
integrated with other frameworks. In the following subsec-
tions, we describe how TUTEL tackles the aforementioned
problems in detail.

3.1 Adaptive Parallelism Switching

3.1.1 What is the least subset that is deserved for
Parallelism Switching?

Given that EP, DP, and MP derive 7 different possible com-
binations of parallelism methods, an ad-hoc approach is to
design one execution flow for each method and makes it
switchable with all other methods. However, designing up
to 7 execution flows is not necessary as the problem can be
precisely simplified into a smaller but efficiency-equivalent
problem, as is highlighted in the subsection title.

Our approach is analyzing complexity of all parallelism
methods to narrow them down to the least subset that we
need to design execution flows for. Note that only commu-
nication complexity matters here because all GPUs con-
duct an identical computation, hence the same computa-
tional complexity, so the communication complexities di-
rectly determines the efficiency of one parallelism method
against others. As shown in Table 4, we analyze commu-
nication complexities of all parallelism methods to remove
those from our consideration if they are (1) not the opti-
mal in any cases or (2) a special case of another method.
By a series of comparison (shown in the Comment column
of Table 4), we draw a conclusion that the subset can in-
clude only DP and EP+DP+MP. Therefore, the following
paragraphs design corresponding parallel structure focus-
ing only on DP and EP+DP+MP, which still guarantees to
cover the optimal parallelism method regardless of model
configurations.

3.1.2 Execution Flow of Zero Cost Switchable
Parallelism

As explained in Section 2.2, the switchable parallelism
should guarantee exactly the same data layout and exe-
cution flow of MoE training. We explain our design for
DP and EP+DP+MP respectively as follows. Zero Cost
means that switching parallelism is completely free, with-
out introducing any overhead larger thanO(1) from param-
eter/token migration.

Switchable DP (Figure 6): It follows the conventional DP
training that takes only local tokens as input, but weight pa-
rameters following the ZeRO-DP Stage-3 Partitioning (Ra-
jbhandari et al., 2020) mechanism. Specifically, it lets each
device to own a unique slice of weights, and performs one
all-gather communication during the forward-pass and one
reduce-scatter communication during the backward-pass,
instead of the conventional training that performs one all-

TUTEL: Adaptive Mixture-of-Experts at Scale

Parallelism Method Communication Complexity Limitation Comment

1⃝ DP O(P) - Possibly optimal
2⃝MP O(Cg ·W) - No better than 6⃝
3⃝ EP O(Cg) E/W ≥ 1 No better than 6⃝
4⃝ DP+MP O(Cg · r + P/r) 1 ≤ r ≤W No better than 7⃝ for any r

5⃝ EP+DP O(Cg + P/E) - A special case of r = 1 in 7⃝
6⃝ EP+MP O(Cg ·max{1,W/E}) - A special case of r = W/E in 7⃝

7⃝ EP+DP+MP
O(Cg ·W/E) – if r ≥W/E
O(Cg · r + P/E/r) – if 1 ≤ r < W/E

- Possibly optimal

Table 4. Analysis on communication complexity of MoE parallelism.

GPU0

GPU1

GPU2

𝐺0

𝐺0

𝐺0

3210

GPU3 𝐺0

7654

111098

15141312

3210

7654

111098

15141312

𝐸0
0

𝐸0
1

𝐸0

𝐸1
0

𝐸1
1

A
ll-G

ath
er

𝐸1

𝐸0
𝐸1

𝐸0
𝐸1

𝐸0
𝐸1

×𝑊

Figure 6. An example of DP execution flow in TUTEL. All-gather
is performed across all (W) GPUs.

reduce communication during the backward-pass. Both
ways are complexity-equivalent as a single all-reduce nat-
urally consists of a reduce-scatter and an all-gather. In Fig-
ure 8, r = 0 stands for the Switchable DP.

Switchable EP+DP+MP (Figure 7): Out of the box, this
parallelism method works the same as the Switchable DP
– they share the same format of reading inputs and slic-
ing weights. Within the box, it not only ensures that the
whole computation is mathematically equivalent to DP, but
also ensures the required computation and network com-
plexity are within the expected complexity of EP+DP+MP
as shown in 7⃝ of Table 4. We define a control parame-
ter r that indicates to partition all GPUs into one or more
groups with size ⌈(W/E)/r⌉ each, so that DP will be per-
formed within each group and MP will be performed across
different groups. Specifically, it repeats local tokens r in
the style of MP at the beginning of execution flow, and fi-
nally performs a local sum symmetrically in the end. DP
is only used to perform all-gather within a group of size
⌈(W/E)/r⌉. Note that if r increases and reaches W/E,
the group size becomes 1, thus all-gather communication
within each group is optimized out. This is why the case
r ≥ W/E in 7⃝ eliminates an additional O(P/E/r). In
Figure 8, r values from 1 to W/E stands for the Switch-
able EP+DP+MP, though r = 1 and r = ⌈W/E⌉ are two
special cases that are exactly equivalent with EP+DP and
EP+MP respectively.

local
repeat

local
sumGPU0

GPU1

GPU2

𝐺0

𝐺0

𝐺0

3210

GPU3 𝐺0

7654

111098

15141312

3210

7654

111098

15141312

A
ll-to

-A
ll (D

isp
atch

)

A
ll-to

-A
ll (C

o
m

b
in

e)

𝐸0
0

𝐸0
1

𝐸0

𝐸0

𝐸1
0

𝐸1
1

A
ll-G

ath
er

𝐸1

𝐸1

A
ll-G

ath
er

× 𝑊/𝐸 /𝑟× 𝑟 × 𝑟

Figure 7. An example of EP+DP+MP execution flow in TUTEL.
Local repeat generates r copies of gating function results, local
sum reduces r outputs from MoE combine, and all-gather is per-
formed across ⌈(W/E)/r⌉ GPUs.

0 1 2 3 maxmax-1

adaptive:{𝒓}
DP EP+DP EP+DP+MP EP+MP

Figure 8. Specifying a parallelism method using adaptive:r,
with max standing for the value ⌈W/E⌉, and all r values larger
than this upper-bound are regarded the same as ⌈W/E⌉.

3.2 Adaptive Pipelining for Linear & 2DH All-to-All

This section presents the design of adaptive pipelining.
As All-to-All communication latency substantially impacts
on the optimal pipelining degree, our adaptive pipelining
jointly optimizes both pipelining degree and All-to-All al-
gorithms (Linear or 2DH) at the same time. While this sec-
tion only explains how to partition input tokens for pipelin-
ing, the following Section 3.3 describes how we jointly
search for the optimal pipelining degree and the All-to-All
communication algorithm.

Token partition for multi-stream pipelining. Tokens
need to be partitioned properly to enable the overlapping
of flows on finer-grained data chunks, so that computa-
tion and communication can be submitted on separate GPU
streams and run in parallel. Traditional partitioning like
batch-splitting or pipeline-parallelism (Huang et al., 2019)
partitions all operations in the layer. This doesn’t work in
MoE because it amplifies the imbalance of MoE dispatch

TUTEL: Adaptive Mixture-of-Experts at Scale

𝐸0𝐶1

𝐸1𝐶1

𝐸0𝐶1

𝐸1𝐶1

Expert(𝐶𝑖)All-to-All(𝐶𝑖) All-to-All(𝐶𝑖)

𝐸0𝐶0

𝐸1𝐶0

𝐸0𝐶0

𝐸1𝐶0

GPU

#0

GPU

#1

𝐸0𝐶

𝐸1𝐶

𝐸0𝐶

𝐸1𝐶

𝐸1𝐶0

𝐸1𝐶1

𝐸0𝐶0

𝐸0𝐶1

𝐸0𝐶0

𝐸0𝐶1

𝐸1𝐶0

𝐸1𝐶1

𝐸1𝐶0

𝐸1𝐶1

𝐸0𝐶0

𝐸0𝐶1

𝐸0𝐶0

𝐸0𝐶1

𝐸1𝐶0

𝐸1𝐶1

𝐸0𝐶1

𝐸1𝐶1

𝐸0𝐶1

𝐸1𝐶1

𝐸0𝐶0

𝐸1𝐶0

𝐸0𝐶0

𝐸1𝐶0

𝐸0𝐶

𝐸1𝐶

𝐸0𝐶

𝐸1𝐶

Split to 𝐶𝑖 Merge 𝐶𝑖

(𝐸, 𝐶𝑔, 𝑀) 2x 𝐸,
𝐶𝑔

2
, 𝑀 2x 𝐸𝑔,

𝐶

2
, 𝑀 (𝐸, 𝐶𝑔, 𝑀)2x 𝐸,

𝐶𝑔

2
, 𝑀2x 𝐸𝑔,

𝐶

2
, 𝑀

Figure 9. Overview of token partition on 2-expert-2-GPU for All-
to-All-Expert multi-stream overlapping. Ei means data is sent to
i-th GPU and processed by i-th expert, and Ci means data belongs
to i-th partition of capacity dimension. All-to-All and expert op-
erations of different capacity partitions can be overlapped.

and destroys correctness for ML features like Batch Priori-
tized Routing (Riquelme et al., 2021). Instead, we propose
to only partition the two All-to-Alls and the expert in be-
tween instead of the whole MoE layer to avoid those short-
comings. Figure 9 gives 2-GPU example for data partition
design in All-to-All-Expert overlapping.

In the forward pass, on each GPU, input of shape
(E,Cg, D) is split along dimension C into two virtual par-
titions of shape (E,Cg/2, D). These two virtual partitions
are marked with C0 and C1. After the splitting, each vir-
tual partition Ci is asynchronously sent to execute All-to-
All operation in i’s order, on communication stream. All-
to-All is customized to accept segregated data chunks as
input and perform inline data shuffling, generating output
of shape (Eg, C/2, D). Next, the two All-to-All outputs
are programmed to be sent to execute expert computation
on computation stream once their previous corresponding
All-to-All is completed, and the outputs of expert com-
putation are again programmed to be sent to execute the
second All-to-All on communication stream once previous
corresponding expert computation is completed. Finally,
a barrier is set after the second All-to-Alls, After the bar-
rier, partitions are merged to generate final output of shape
(E,Cg, D).

The backward pass works in a similar way as the forward
pass, except that the input becomes the gradients of the
original output, the computation becomes the backward
computation of the expert, and the output becomes the gra-
dients of the original input.

Note that all partitioning and reshaping operations are done
inline by customized operations, hence no extra data copy
overhead compared with no-overlapping cases.

3.3 Dictionary of Optimal Parallelism & Pipelining

TUTEL manages a dictionary to memorize the optimal par-
allelism and pipelining setup of various different ranges of
expert capacities. Specifically, we define the dictionary as
a hash map: ⌊c/R⌋ → {r∗, d∗, a∗}, where c is a capac-
ity value of a certain iteration, R is the window size that
converges multiple adjacent c values into the same key (de-
fault is 128), and {r∗, d∗, a∗} is a tuple of the optimal setup
(adaptive:r, pipelining degree, and All-to-All algorithm,
respectively). To build up this dictionary beforehand, we
need to find the optimal setup of each possible key (⌊c/R⌋)
that only requires a few trials, which is calculated as:

trials per key = (log3/2⌈W/E⌉+ 2) · 4 · 2.

(log3/2⌈W/E⌉+2) is the number of needed trials to search
for r∗ via Ternary Search (Wikipedia, 2023) because r in
range [1, ⌈W/E⌉ − 1] determines a convex optimal distri-
bution, plus two extra trials for r = 0 and r = ⌈W/E⌉.
“4” is the number of needed trials for d∗ as we limit the
search space of the pipelining degree to {1, 2, 4, 8}. To our
practices, larger degrees than 8 hardly improve the over-
lapping between computation and communication, while
significantly inflating All-to-All overhead. “2” refers to the
number of All-to-All algorithms (Linear or 2DH).

4 IMPLEMENTATION

4.1 Features

TUTEL provides more comprehensive support on MoE
model training for different devices, data types and MoE-
related features compared with other MoE frameworks, in-
cluding DeepSpeed MoE, Fairseq MoE, and FastMoE.

Dynamic Top-ANY MoE Gating. To enable a variety of
sparsity options for MoE training, TUTEL supports top-
ANY routing. The k value can be customized per step as
well to enable dynamic sparsity updates, which is useful
when different iterations of one MoE layer use their pre-
ferred top-k settings instead of using the same k value.
Users can leverage this feature to dynamically fine-tune
sparsity of MoE layers.

Dynamic Capacity Factor. To smartly control the capac-
ity upper-bound under varying token imbalance, TUTEL
supports adjusting the capacity factor dynamically at ev-
ery iterations. As illustrated in Figure 10, the adjustment
behavior is controlled by argument capacity setting = x
passed to our MoE layer API. If x is positive, the value is
directly applied as the capacity factor of the MoE layer. If
x is zero, TUTEL automatically adapts the capacity factor
to the minimum value that does not drop any tokens at each
iteration. If x is negative, it works the same as when x is

TUTEL: Adaptive Mixture-of-Experts at Scale

0

2

4

6

8

0 1 2 3 4 5 6 7

C
ap

ac
it

y
 F

ac
to

r

Steps

Minimum capacity factor that does not drop any tokens

Capacity factor applied at runtime

0

2

4

6

8

0 1 2 3 4 5 6 7
C

ap
ac

it
y
 F

ac
to

r

Steps

0

2

4

6

8

0 1 2 3 4 5 6 7

C
ap

ac
it

y
 F

ac
to

r

Steps

capacity_setting = 4

(no adaptive)

capacity_setting = 0

(adaptive)

capacity_setting = −4

(hybrid)

Figure 10. Examples of dynamic capacity factor adaptation when
capacity setting is given as 4, 0, and −4, respectively.

0

20

40

60

80

100

120

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

E
x
p
er

t
T

h
ro

u
g
h
p
u
t

(T
F

L
O

P
S

)

W

ΔE=1, A2A

ΔE=1, Flexible A2AAA

ΔE=2, A2A

ΔE=2, Flexible A2A

𝐸𝑔 = 1, A2A

𝐸𝑔 = 1, Flexible A2A

𝐸𝑔 = 2, A2A

𝐸𝑔 = 2, Flexible A2A

Figure 11. Throughput for expert computation based on A2A
(All-to-All) layout and Flexible A2A layout.

zero except that −x is set as the upper bound of capacity
factor, i.e., any exceeding value will be adapted to −x.

4.2 Optimizations

Flexible All-to-All. We propose an abstraction upon con-
ventional MPI/NCCL All-to-All interfaces to ensure high
computational throughput of MoE experts regardless of
the scale, which is called Flexible All-to-All in this con-
text. Existing All-to-All transforms the tensor layout from
(E,Cg, D) into (W,Eg, Cg, D) where Cg relies on W ,
which affects the efficiency of the following matrix multi-
plication by experts. Instead, we transform the output lay-
out into (Eg, C,D) that ensures the same-shaped matrix
multiplication at any scale (W). Figure 11 compares the
expert computation throughput between the conventional
All-to-All and Flexible All-to-All.

Kernel Optimization: Fast Encode and Decode. Ac-
cording to GShard (Lepikhin et al., 2021), existing im-
plementations for MoE dispatch and combine need mul-
tiple einsum and matrix multiplication operations. TUTEL
deeply optimizes this by using SIMT-efficient sparse opera-
tions, which we call fast encode and decode. It largely min-
imizes the latency of non-expert computations, as shown in
Figure 15. This optimization saves GPU memory as well,
achieving 20% ∼ 90% memory saving in most cases. See
more details of fast encode and decode in Appendix B.

tokens/step Fairseq MoE (GiB) TUTEL MoE (GiB)
4,096 3.7 2.9 (-21.6%)
8,192 6.2 3.2 (-48.4%)
16,384 16.3 4.0 (-75.5%)
32,768 57.9 5.7 (-90.2%)

Table 5. GPU memory cost for single MoE layer. (Static Settings:
D = H = 4096, top-k = 2, Eg = 2)

0%

20%

40%

60%

80%

100%

1 2 4 8

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t Base

DP (r = 0) EP+DP (r = 1) EP+DP+MP (r = 2) EP+MP (r = 4)

0%

20%

40%

60%

80%

100%

1 2 4 8

N
o
rm

al
iz

ed
 T

h
ro

u
g
h
p
u
t Large

Capacity Factor Capacity Factor

Figure 12. Normalized throughputs of different capacity factors f
under Base (left) and Large (right) MoE configurations. The fig-
ure shows that the optimal parallelism method differs depending
on capacity factor f .

5 EVALUATION

Testbed. If not specified, all experiments use Azure Stan-
dard ND96amsr A100 v4 VMs (Azure, 2023) . Each VM
is equipped with 8× NVIDIA A100 SXM 80GB GPUs
and 8× 200 Gbps HDR InfiniBand, backed by 96× 2nd-
generation AMD Epyc CPU cores and 1.9 TiB mem-
ory. GPUs are connected by 3rd-generation NVLink and
NVSwitch within one VM, while different VMs are con-
nected through 1,600 Gbps InfiniBand non-blocking net-
work with adaptive routing.

Setup. For baseline, we use PyTorch 1.8.0 and Fairseq
moe branch by default. NCCL 2.10.3-1 (NVIDIA, 2023a)
and NCCL RDMA SHARP plugin (Mellanox, 2023) are
used for communication when scaling out. We use up to
2,048 A100 GPUs (256 VMs) for experiments.

5.1 Evaluation on Adaptive MoE with TUTEL

This section evaluates gains from adaptive computation us-
ing TUTEL. We compare the throughput of optimal paral-
lelism / pipelining strategy and study the gain from adap-
tivity of TUTEL. For apples-to-apples comparison with ex-
isting frameworks, in Section 5.2, we compare TUTEL with
Fairseq MoE (Ott et al., 2019) only using a specific paral-
lelism method that is supported by both.

5.1.1 Adaptive Parallelism Switching

We evaluate adaptive parallelism switching with various
MoE model settings using a single node. Figure 12 com-
pares normalized throughputs using different parallelism
options where capacity factor f varies from 1.0 to 8.0. We
test two MoE configurations, Base (samples/step = 4K
and H = 2K) and Large (samples/step = 1K and

TUTEL: Adaptive Mixture-of-Experts at Scale

GPU
Num.

All2All
Algo.

Pipelining Degree
1 2 4 8

16 Linear 20% 2% 2% 11%
2DH 101% 98% 100% 106%

32 Linear 16% 1% 2% 11%
2DH 45% 43% 44% 51%

64 Linear 13% 1% 5% 15%
2DH 28% 25% 27% 34%

128 Linear 9% 2% 9% 29%
2DH 16% 16% 19% 26%

256 Linear 20% 27% 54% 107%
2DH 12% 20% 34% 11%

(a) Adaptive pipelining improvement on average.
GPU
Num.

All2All
Algo.

Pipelining Degree
1 2 4 8

16 Linear 60% 32% 50% 176%
2DH 149% 139% 142% 184%

32 Linear 60% 31% 41% 135%
2DH 89% 75% 59% 148%

64 Linear 55% 23% 42% 161%
2DH 70% 54% 41% 109%

128 Linear 45% 54% 87% 300%
2DH 52% 37% 35% 107%

256 Linear 100% 160% 317% 599%
2DH 73% 139% 193% 182%

(b) Adaptive pipelining improvement over the worst case.

Table 6. Adaptive pipelining improvements.

H = 32K), while other expert settings are shared (E = 16,
D = 2K, and 64 total GPUs). As shown in the figure, the
optimal parallelism method varies depending on the MoE
expert configurations and capacity configurations. For in-
stance, DP (r = 0) tends to be more favorable when the
expert capacity is high, and as the capacity decreases, the
tendency gradually changes to EP+DP (r = 1) and then to
EP+DP+MP (r > 1). In relatively smaller-scale MoE con-
figurations, the optimal parallelism option typically stays
in r = 0 or r = 1, while it dynamically changes across a
wider range of r values in larger-scale configurations. Such
a variety evidences a substantial chance of improvements
with TUTEL, which leads to different optimal parallelism
methods according to the dynamically changing f , as ex-
plained in Section 3.1.

5.1.2 Adaptive Pipelining

We evaluate adaptive pipelining on 243 typical MoE model
settings on different scale (16 ∼ 256 GPUs). We test all
combinations of MoE model configurations within: Eg ∈
{0.5, 1, 2}, D ∈ {1024, 2048, 4096}, H ∈ {1024, 2048,
4096}, and tokens/step ∈ {4096, 16384, 65536}. For com-
parison, we also measure different static pipelining meth-
ods considering different degrees {1, 2, 4, 8} and different
All-to-All algorithms (Linear or 2DH).

Table 6a shows average improvement on these 243 mod-
els. Compared with baseline solution (pipelining degree 1)
and Linear All-to-All), adaptive piplining achieves 9% ∼

1 2 4 8

−20%

0%

20%

40%

60%

80%

Capacity Factor

Im
p
ro
ve
m
en
t

16 GPUs

1 2 4 8

32 GPUs

1 2 4 8

64 GPUs

1 2 4 8

128 GPUs

1 2 4 8

256 GPUs

Pipe Degree 1 2 4 8 Adaptive

Figure 13. Improvement from adaptive pipelining depending on
capacity factor f . D = 4096, H = 4096, Eg = 2, and to-
kens/step = 4096.

0

500

1000

1500

2000

2500

S
te

p
 T

im
e

(m
s)

Number of GPUs

0

50

100

150

200

250

300

S
te

p
 T

im
e

(m
s)

Number of GPUs

Baseline

+ Fast Encode & Decode

+ 2DH All-to-All

+ Flexible All-to-All

+ Ada. Pipelining (TUTEL)

Pure Computation of TUTEL

Figure 14. Single MoE layer improvement breakdown. The base-
line is a Fairseq / DeepSpeed MoE layer.

101% improvement in average. Compared with different
static strategies, it also can achieve 1% ∼ 107% improve-
ment in average. Besides, adaptive piplining achieves sig-
nificant improvement and avoids performance regression in
the worst case, which shows 23% ∼ 599% improvement
in Table 6b.

We also evaluate the performance gain under different dy-
namic workloads on different scales. We use different ca-
pacity factors f to emulate different workload patterns in
different training iterations. As shown in Figure 13, adap-
tive pipelining always chooses the best strategy, and it can
achieve up to 39% improvement with f = 4 and up to 57%
improvement with f = 8, compared with baseline (pipelin-
ing degree 1).

5.2 Single MoE Layer Scaling

We evaluate the step time of single MoE layer when scaling
out to 2,048 GPUs. It uses tokens/step = 16384, f = 1,
D = 2048, H = 2048, Eg = 2, top-k = 2, adaptive:r = 1.
We add TUTEL features once at a time to study where the
major gain is from, where Fairseq (Ott et al., 2019) is used
as the baseline. Detailed experiments for each feature are
provided in the following Section 5.1.

TUTEL: Adaptive Mixture-of-Experts at Scale

MoE fflayer MoE gate

MoE dispatch (encode) MoE combine (decode)

Others (einsum/topk/cumsum/..)

0

0.04

0.08

0.12

0.16

0.2

① ②

E
la

p
se

d
 T

im
e

(s
)

8K Token

① ②

16K Token

① ②

64K Token

① ②

32K Token

OOM

Total 0.47s
① Fairseq / DeepSpeed MoE

② TUTEL

Figure 15. Kernel computation breakdown comparison between
TUTEL and Fairseq / DeepSpeed MoE.

The following explains each curve in Figure 14 in or-
der. 1⃝ (red, circle) Fairseq / DeepSpeed MoE Baseline.
Fairseq and DeepSpeed MoE perform the same as they
use an equivalent MoE layer implementation. 2⃝ (blue,
diamond) TUTEL Kernel (Fast Encode & Decode in Sec-
tion 4.2) + Linear All-to-All. TUTEL kernel optimizations
deliver a large gain at a small scale (3.52× on 16 GPUs),
while the gain becomes small at a large scale (1.04× on
2,048 GPUs). The detailed gains from using TUTEL ker-
nels over Fairseq are shown in Figure 15. 3⃝ (yellow, tri-
angle) TUTEL Kernel + 2DH All-to-All. 2DH All-to-All
delivers a significant gain on a large scale (4.25× on 2,048
GPUs). 4⃝ (gray, square) TUTEL Kernel + 2DH All-to-All
+ Flexible All-to-All. Flexible All-to-All delivers gains on
large scales starting from 256 GPUs, e.g., 1.24× on 2,048
GPUs compared with not using it. 5⃝ (green, cross) TUTEL
Kernel + 2DH All-to-All + Flexible All-to-All + Adaptive
Pipelining Degree. 5⃝ shows the mixture of gains from op-
timizing the pipelining degree together with Linear/2DH
All-to-All algorithms, further achieving 1.43× and 1.04×
on 16 and 2,048 GPUs, respectively. 5⃝ becomes less im-
portant on larger scales as the overhead of slicing tokens
becomes more detrimental to All-to-All efficiency. The
breakdown does not include adaptive parallelism switching
as it statically uses adaptive:r = 1, not only because this
parallelism is officially supported by Fairseq MoE while
others are not, but also to ensure that the All-to-All com-
munication size required by TUTEL and Fairseq MoE are
exactly the same, so as to fairly compare the improvement
of All-to-All.

Compared with the baseline, TUTEL finally delivers
4.96×, 3.11×, and 5.75× speedup on 16 GPUs, 128
GPUs, and 2,048 GPUs, respectively. For computation-
communication breakdown, 6⃝ (purple, dashed) shows the
pure computation overhead of the complete TUTEL (ex-
cluding the portion overlapped with communication). Note
that the slight increase of computation overhead as we scale
out is not from the system overhead but due to more theo-
retical computation required by the gating function for total
Eg ·W experts.

#GPU Dense
train / infer

Fairseq MoE
train / infer

TUTEL MoE
train / infer

Speedup
train / infer

8 291 / 1198 240 / 507 274 / 1053 1.14× / 2.08×
16 290 / 1198 173 / 473 253 / 943 1.46× / 1.99×
32 288 / 1195 162 / 455 249 / 892 1.54× / 1.96×
64 285 / 1187 159 / 429 234 / 835 1.47× / 1.95×
128 256 / 1103 146 / 375 226 / 792 1.55× / 2.11×

Table 7. Comparing the training and inference speeds (images per
second) of SwinV2-MoE using Fairseq and TUTEL.

5.3 Adoption to Real-world Problems: SwinV2-MoE

We introduce SwinV2-MoE to verify the correctness and
performance of TUTEL in end-to-end training and test-
ing. SwinV2-MoE is an MoE version of Swin Transformer
V2 (Liu et al., 2021; 2022), which is a state-of-the-art com-
puter vision neural network architecture that is widely used
in a large variety of computer vision problems. SwinV2-
MoE is built from a dense Swin Transformer V2 model
with every other feed-forward layer replaced by an MoE
layer except for the first two network stages. The SwinV2-
B model is adapted for experiments, and the default hyper-
parameters are: E = 32, top-k = 1, and f = 1.0.

5.3.1 Experiment Setup

Pre-training and Down-stream Computer Vision Tasks.
We follow (Liu et al., 2021) to use ImageNet-22K image
classification datasets for model pre-training, which con-
tains 14.2 million images and 22 thousand classes. In ad-
dition to evaluating the performance of the pre-training
task (using a validation set with each class containing 10
randomly selected images), we also evaluated the mod-
els using 3 down-stream tasks: 1) ImageNet-1K fine-
tuning accuracy. The pre-trained models are fine-tuned on
ImageNet-1K training data and the top-1 accuracy on the
validation set is reported; 2) ImageNet-1K 5-shot linear
evaluation (Riquelme et al., 2021). 5 randomly selected
training images are used to train a linear classifier, and the
top-1 accuracy on the validation set is reported; 3) COCO
object detection (Lin et al., 2014). The pre-trained mod-
els are fine-tuned on the COCO object detection training
set using a cascade mask R-CNN framework (Liu et al.,
2021), and box/mask AP on the validation set is reported.

5.3.2 Experiment Results

Speed Comparison. Table 7 compares the training and
inference speeds of SwinV2-MoE using Fairseq and TU-
TEL. For all GPU numbers, from 8 to 128 (1 expert
per GPU), TUTEL is significantly faster than Fairseq in
both training and inference. Speedup of each iteration is
1.14× ∼ 1.55× and 1.95× ∼ 2.11× in training and in-
ference, respectively.

TUTEL: Adaptive Mixture-of-Experts at Scale

Method IN-22K
acc@1

IN-1K/ft
acc@1

IN-1K/5-shot
acc@1

COCO (AP)
box / mask

SwinV2-B 37.2 85.1 75.9 53.0 / 45.8
SwinV2-MoE-B 38.5 85.5 77.9 53.4 / 46.2

Table 8. Comparing the pre-training and fine-tuning accuracy be-
tween the sparse SwinV2-MoE-B model and its dense counterpart
SwinV2-B.

Accuracy Comparison. We report the results of
SwinV2-MoE-B on both pre-training and down-stream
tasks, compared to the counterpart dense models, as shown
in Table 8. SwinV2-MoE-B achieves a top-1 accuracy of
38.5% on the ImageNet-22K pre-training task, which is
+1.3% higher than the counterpart dense model. It also
achieves higher accuracy on down-stream tasks: 85.5%
top-1 accuracy on ImageNet-1K image classification,
77.9% top-1 accuracy on 5-shot ImageNet-1K classi-
fication, and 53.4/46.2 box/mask AP on COCO object
detection, which is +0.4%, +2.0%, and +0.4/+0.4 box/mask
AP higher than that using dense modes, respectively. In
particular, it is the first time that the sparse MoE model
is applied and demonstrated beneficial on the important
down-stream vision task of COCO object detection.

6 CONCLUSION

In this paper, we analyze the key dynamic characteristics in
MoE from system’s perspectives. We address consequent
issues by designing an adaptive system for MoE, TUTEL,
which we present in two major aspects: adaptive paral-
lelism for optimal expert execution and adaptive pipelining
for tackling inefficient and non-scalable dispatch/combine
operations in MoE layers. We evaluate TUTEL in an Azure
A100 cluster with 2,048 GPUs and show that it achieves
up to 5.75× speedup for a single MoE layer. TUTEL em-
powers both training and inference of real-world state-of-
the-art deep learning models. As an example, this paper
introduces our practice that adopts TUTEL for developing
SwinV2-MoE, which shows effectiveness of MoE in com-
puter vision tasks comparing against the counterpart dense
model.

ACKNOWLEDGEMENTS

We appreciate the feedback by our shepherd, Lianmin
Zheng, as well as anonymous reviewers of MLSys’23.

REFERENCES

Azure, M. NDm A100 v4-series - Azure Virtual
Machines. https://docs.microsoft.
com/en-us/azure/virtual-machines/
ndm-a100-v4-series, 2023. [Online; accessed
Apr 2023].

Bruck, J., Ho, C.-T., Kipnis, S., Upfal, E., and Weathersby,
D. Efficient algorithms for all-to-all communications in
multiport message-passing systems. IEEE Transactions
on parallel and distributed systems, 8(11):1143–1156,
1997.

Chi, Z., Dong, L., Huang, S., Dai, D., Ma, S., Patra, B.,
Singhal, S., Bajaj, P., Song, X., and Wei, F. On the rep-
resentation collapse of sparse mixture of experts. CoRR,
abs/2204.09179, 2022.

Clark, A., de Las Casas, D., Guy, A., Mensch, A., Pa-
ganini, M., Hoffmann, J., Damoc, B., Hechtman, B. A.,
Cai, T., Borgeaud, S., van den Driessche, G., Ruther-
ford, E., Hennigan, T., Johnson, M. J., Cassirer, A.,
Jones, C., Buchatskaya, E., Budden, D., Sifre, L., Osin-
dero, S., Vinyals, O., Ranzato, M., Rae, J. W., Elsen,
E., Kavukcuoglu, K., and Simonyan, K. Unified scaling
laws for routed language models. In Proceedings of the
International Conference on Machine Learning (ICML),
2022.

Cowan, M., Maleki, S., Musuvathi, M., Saarikivi, O., and
Xiong, Y. MSCCLang: Microsoft collective commu-
nication language. In Proceedings of the ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), 2023.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., Zoph,
B., Fedus, L., Bosma, M. P., Zhou, Z., Wang, T., Wang,
Y. E., Webster, K., Pellat, M., Robinson, K., Meier-
Hellstern, K. S., Duke, T., Dixon, L., Zhang, K., Le,
Q. V., Wu, Y., Chen, Z., and Cui, C. Glam: Efficient
scaling of language models with mixture-of-experts. In
Proceedings of the International Conference on Machine
Learning (ICML), 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

He, J., Zhai, J., Antunes, T., Wang, H., Luo, F., Shi, S.,
and Li, Q. Fastermoe: Modeling and optimizing training
of large-scale dynamic pre-trained models. In Proceed-
ings of the ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), 2022.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M. X., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., and Chen,
Z. Gpipe: Efficient training of giant neural networks us-
ing pipeline parallelism. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS),
2019.

https://docs.microsoft.com/en-us/azure/virtual-machines/ndm-a100-v4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndm-a100-v4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ndm-a100-v4-series

TUTEL: Adaptive Mixture-of-Experts at Scale

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
CoRR, abs/2001.08361, 2020.

Kim, J., Dally, W. J., Scott, S., and Abts, D. Technology-
driven, highly-scalable dragonfly topology. In Proceed-
ings of the International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2008.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scal-
ing giant models with conditional computation and au-
tomatic sharding. In Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Lewis, M., Bhosale, S., Dettmers, T., Goyal, N., and Zettle-
moyer, L. BASE layers: Simplifying training of large,
sparse models. In Meila, M. and Zhang, T. (eds.), Pro-
ceedings of the International Conference on Machine
Learning (ICML), 2021.

Lin, J., Yang, A., Bai, J., Zhou, C., Jiang, L., Jia, X., Wang,
A., Zhang, J., Li, Y., Lin, W., Zhou, J., and Yang, H. M6-
10T: A sharing-delinking paradigm for efficient multi-
trillion parameter pretraining. CoRR, abs/2110.03888,
2021.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision, pp. 740–755. Springer, 2014.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2021.

Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J.,
Cao, Y., Zhang, Z., Dong, L., Wei, F., and Guo, B. Swin
transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2022.

Mellanox. RDMA and SHARP Plugins for NCCL
Library. https://github.com/Mellanox/
nccl-rdma-sharp-plugins, 2023. [Online;
accessed Apr 2023].

Microsoft. DeepSpeed. https://www.deepspeed.
ai/, 2023. [Online; accessed Apr 2023].

NVIDIA. What is LL128 Protocol? https://github.
com/NVIDIA/nccl/issues/281, 2020a. [Online;
accessed Apr 2023].

NVIDIA. NVIDIA A100 Tensor Core GPU Architecture
– Unprecedented Acceleration at Every Scale. Whitepa-
per, 2020b.

NVIDIA. NVIDIA Collective Communications Library
(NCCL). https://github.com/NVIDIA/nccl/
tree/v2.10.3-1, 2023a. [Online; accessed Apr
2023].

NVIDIA. Point-to-point communication – NCCL 2.10.3
documentation. https://docs.nvidia.com/
deeplearning/nccl/archives/nccl_2103/
user-guide/docs/usage/p2p.html, 2023b.
[Online; accessed Apr 2023].

NVIDIA. NCCL Tests. https://github.com/
NVIDIA/nccl-tests, 2023c. [Online; accessed Apr
2023].

NVIDIA. NVLink & NVSwitch: Fastest HPC Data Center
Platform. https://www.nvidia.com/en-us/
data-center/nvlink/, 2023d. [Online; accessed
Apr 2023].

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, exten-
sible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS),
2019.

Pjesivac-Grbovic, J. Towards automatic and adaptive opti-
mizations of mpi collective operations. 2007.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
memory optimizations toward training trillion parameter
models. In Cuicchi, C., Qualters, I., and Kramer, W. T.
(eds.), Proceedings of the International Conference for
High Performance Computing, Networking, Storage and
Analysis (SC). IEEE/ACM, 2020.

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi,
R. Y., Awan, A. A., Rasley, J., and He, Y. Deepspeed-
moe: Advancing mixture-of-experts inference and train-
ing to power next-generation AI scale. In Proceedings
of the International Conference on Machine Learning
(ICML), 2022.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Pinto, A. S., Keysers, D., and Houlsby, N.
Scaling vision with sparse mixture of experts. In Pro-
ceedings of the Neural Information Processing Systems
(NeurIPS), 2021.

https://github.com/Mellanox/nccl-rdma-sharp-plugins
https://github.com/Mellanox/nccl-rdma-sharp-plugins
https://www.deepspeed.ai/
https://www.deepspeed.ai/
https://github.com/NVIDIA/nccl/issues/281
https://github.com/NVIDIA/nccl/issues/281
https://github.com/NVIDIA/nccl/tree/v2.10.3-1
https://github.com/NVIDIA/nccl/tree/v2.10.3-1
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2103/user-guide/docs/usage/p2p.html
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2103/user-guide/docs/usage/p2p.html
https://docs.nvidia.com/deeplearning/nccl/archives/nccl_2103/user-guide/docs/usage/p2p.html
https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nccl-tests
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/

TUTEL: Adaptive Mixture-of-Experts at Scale

Roller, S., Sukhbaatar, S., Szlam, A., and Weston, J. Hash
layers for large sparse models. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y. N., Liang, P., and Vaughan, J. W.
(eds.), Proceedings of the Neural Information Process-
ing Systems (NeurIPS), 2021.

Sergeev, A. and Del Balso, M. Horovod: fast and easy
distributed deep learning in tensorflow. arXiv preprint
arXiv:1802.05799, 2018.

Sharir, O., Peleg, B., and Shoham, Y. The cost of
training NLP models: A concise overview. CoRR,
abs/2004.08900, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. In Proceedings of the International Conference on
Learning Representations (ICLR), 2017.

Snir, M., Gropp, W., Otto, S., Huss-Lederman, S., Don-
garra, J., and Walker, D. MPI–the Complete Reference:
the MPI core, volume 1. MIT press, 1998.

Thakur, R. and Choudhary, A. All-to-all communication
on meshes with wormhole routing. In Proceedings of 8th
International Parallel Processing Symposium, pp. 561–
565. IEEE, 1994.

Wikipedia. Ternary Search. https://en.
wikipedia.org/wiki/Ternary_search,
2023. [Online; accessed Apr 2023].

Yang, A., Lin, J., Men, R., Zhou, C., Jiang, L., Jia, X.,
Wang, A., Zhang, J., Wang, J., Li, Y., Zhang, D., Lin, W.,
Qu, L., Zhou, J., and Yang, H. Exploring sparse expert
models and beyond. CoRR, abs/2105.15082, 2021.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., Gonzalez,
J. E., and Stoica, I. Alpa: Automating inter- and Intra-
Operator parallelism for distributed deep learning. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2022.

https://en.wikipedia.org/wiki/Ternary_search
https://en.wikipedia.org/wiki/Ternary_search

TUTEL: Adaptive Mixture-of-Experts at Scale

A TWO-DIMENSIONAL HIERARCHICAL
(2DH) ALL-TO-ALL

This section describes 2DH All-to-All, a novel All-to-All
algorithm proposed by TUTEL.

A.1 Motivation: Small Size of Message Transfer

Most of popular DL frameworks (Microsoft, 2023;
Ott et al., 2019; Sergeev & Del Balso, 2018; Paszke
et al., 2019) leverage point-to-point (P2P) APIs of
NCCL (NVIDIA, 2023b),4 the state-of-the-art GPU collec-
tive communication library, to implement Linear All-to-All
algorithm (see Algorithm 1). It operates on n GPUs, where
each GPU splits its total S bytes of data into n chunks
(S/n bytes each) and performs P2P communication with
all other GPUs. The P2P chunk size S/n transferred be-
tween any two GPUs will become smaller when we scale
out (larger n), which is hard to saturate the high-speed links
such as NVLink and HDR InfiniBand at a large scale (see
Figure 16). S is fixed and only decided by the model itself.

A.2 Approach and Challenges

To achieve a high link bandwidth, our approach is aggre-
gating multiple data chunks that are sent from multiple lo-
cal GPUs to the same remote GPU. This avoids sending
multiple small messages over networking by merging small
chunks into a single large chunk, which significantly im-
proves the link bandwidth utilization.

Unfortunately, an efficient implementation of this approach
on a large scale is challenging due to the overhead of aggre-
gating small messages. Specifically, to aggregate chunks
inside a node with m local GPUs, all m GPUs in the node
need to exchange S

n×
n
m = S

m chunks with each other. This
is equivalent to performing S

n size intra-node All-to-All n
m

times, as illustrated in Figure 17, phase 1 of the naı̈ve local
aggregation All-to-All. The latency of this intra-node All-
to-All process is expected to be constant as chunk size S

m
does not rely on n, but unexpectedly, it actually increases as
n scales out due to n

m times non-contiguous memory access
on GPUs. For example, in phase 1 of the naı̈ve local aggre-
gation, intra-node GPUs exchange non-contiguous chunks
twice with each other (01 and 05, 02 and 06, etc.) that in-
curs O(n

m) non-contiguous memory access on each GPU.
Specifically, when S = 128 MiB and m = 8, we observe
that intra-node All-to-All process takes∼ 600µs for n = 8
and increases up to ∼ 5ms for n = 2048.

4Message Passing Interface (MPI) (Snir et al., 1998) also has
developed various All-to-All algorithms (Pjesivac-Grbovic, 2007;
Thakur & Choudhary, 1994; Bruck et al., 1997), but we only dis-
cuss NCCL in this work as it outperforms MPI in most DL sce-
narios. Note MPI mainly focuses on traditional HPC workloads
where S is typically much smaller than DL workloads.

Algorithm 1 Linear All-to-All using Point-to-Point APIs

1: procedure ALL2ALL LINEAR(output, input)
2: n ← ngpus, S ← sizeof input
3: chunksize ← S / n
4: for r = 0; r < n; r++ do
5: loc ← r × chunksize, peer ← r
6: ncclSend(input[loc], chunksize,

peer)
7: ncclRecv(output[loc], chunksize,

peer)
8: end for
9: end procedure

21 23 25 27 29 211 213
0

5

10

15

20

25

Message size (KiB)

B
an

d
w
id
th

(G
B
/s
)

theoretical
ib write bw

(a) GPUDirect RDMA
ib write bw (TX depth =
8) over HDR InfiniBand on
two Azure NDv4 VMs (Azure,
2023).

64 128 256 512 1,024 2,048
0

5

10

15

20

25

30

GPU Number

B
u
s
B
an

d
w
id
th

(G
B
/s
) theoretical

256 MiB
32 MiB
1 MiB

(b) All-to-All bus bandwidth in
nccl-tests scaling from 64-GPU
to 2048-GPU.

Figure 16. Under-utilized bandwidth for small messages.

A.3 Algorithm

To avoid the slowdown due to non-contiguous memory ac-
cess, 2DH All-to-All consists of additional phases that con-
duct efficient stride memory copies to align non-contiguous
chunks into a contiguous address space. To be specific,
Figure 17 illustrates all phases of 2DH All-to-All in order.
Instead of performing intra-node All-to-All from the begin-
ning like the naı̈ve local aggregation, we first align chunks
that share the same local destination GPU via stride mem-
ory copies (phase 1) and then conduct intra-node All-to-All
(phase 2). In the following phase, again, we align chunks
that share the same remote destination GPU (phase 3) and
then finally conduct inter-node All-to-All (phase 4). By
leveraging stride memory copies, 2DH All-to-All achieves
a high memory bandwidth utilization, keeping a constant
and low latency regardless of n in the first three phases.
The benefit of 2DH All-to-All over existing algorithms in-
creases as S/n gets smaller (a smaller data size S or a larger
number of GPUs n). Note that this is beneficial for rail-
optimized InfiniBand networking as well since it avoids
cross-rail communication.

TUTEL: Adaptive Mixture-of-Experts at Scale

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

00 04 01 05 02 06 03 07

10 14 11 15 12 16 13 17

20 24 21 25 22 26 23 27

30 34 31 35 32 36 33 37

40 44 41 45 42 46 43 47

50 54 51 55 52 56 53 57

60 64 61 65 62 66 63 67

70 74 71 75 72 76 73 77

GPU0

GPU1

GPU2

GPU3

GPU4

GPU5

GPU6

GPU7

00 04 10 14 20 24 30 34

01 05 11 15 21 25 31 35

02 06 12 16 22 26 32 36

03 07 13 17 23 27 33 37

40 44 50 54 60 64 70 74

41 45 51 55 61 65 71 75

42 46 52 56 62 66 72 76

43 47 53 57 63 67 73 77

00 10 20 30 04 14 24 34

01 11 21 31 05 15 25 35

02 12 22 32 06 16 26 36

03 13 23 33 07 17 27 37

40 50 60 70 44 54 64 74

41 51 61 71 45 55 65 75

42 52 62 72 46 56 66 76

43 53 63 73 47 57 67 77

00 10 20 30 40 50 60 70

01 11 21 31 41 51 61 71

02 12 22 32 42 52 62 72

03 13 23 33 43 53 63 73

04 14 24 34 44 54 64 74

05 15 25 35 45 55 65 75

06 16 26 36 46 56 66 76

07 17 27 37 47 57 67 77

Initial data layout

Phase 1 Phase 2 Phase 3 Phase 4 (finished)

Naïve

2DH Initial data layout

Phase 1 Phase 2 (finished)

Figure 17. Example of data layouts in each phase of the naı̈ve local aggregation All-to-All and two-dimensional hierarchical (2DH)
All-to-All. In this example, there are two nodes that consist of GPU 0∼3 and GPU 4∼7, respectively.

64 128 256 512 1,024 2,048 4,096
102

103

104

GPU Number

M
ic
ro
se
co
n
d
s
(µ
s)

0.25

0.5

1

2

4

8

16

32

S
p
ee
d
u
p
(t
im

e L
in

e
a
r
/t
im

e 2
D
H
)

1 MiB All-to-All

Linear Algo

2DH Algo

Speedup

(a) All-to-All 1 MiB.

64 128 256 512 1,024 2,048 4,096
103

104

105

GPU Number

M
ic
ro
se
co
n
d
s
(µ
s)

0.25

0.5

1

2

4

8

16

S
p
ee
d
u
p
(t
im

e L
in

e
a
r
/t
im

e 2
D
H
)

32 MiB All-to-All

Linear Algo

2DH Algo

Speedup

(b) All-to-All 32 MiB.

64 128 256 512 1,024 2,048 4,096

104

105

GPU Number

M
ic
ro
se
co
n
d
s
(µ
s)

0.25

0.5

1

2

4

8

16

S
p
ee
d
u
p
(t
im

e L
in

e
a
r
/t
im

e 2
D
H
)

256 MiB All-to-All

Linear Algo

2DH Algo

Speedup

(c) All-to-All 256 MiB.

Figure 18. Comparison between linear and 2DH All-to-All algorithms with various sizes in NCCL.

A.4 Optimization with MSCCL

Implementation using NCCL APIs. We implement
2DH All-to-All algorithm using NCCL’s ncclSend and
ncclRecvAPIs (see details in Algorithm 2). It consists of
two steps. The first step corresponds to phase 1 ∼ 3 in Fig-
ure 17 and contains intra-node All-to-All communication
and two stride memory copies, of which latencies only rely
on S. The second step corresponds to phase 4 in Figure 17,
which is inter-node All-to-All and its latency relies on n/m
instead of n as local chunks are already merged.

Optimization via MSCCL. Implementation using
NCCL APIs requires extra synchronization barriers
between different phases in 2DH All-to-All and may
cause throughput degradation. In order to achieve better
performance, we leverage MSCCL by describing the
2DH algorithm in a domain specific language (DSL) and
optimizing with the compiler (Cowan et al., 2023). The
custom compiler also leverages LL128 protocol (NVIDIA,
2020a) for All-to-All, which could achieve better effi-
ciency than default NCCL-based implementation in low
latency scenarios like small sizes All-to-All.

Extension. On existing GPU clusters, local GPU num-
ber m is usually 8 or 16, which makes n

m still large
when scaling out All-to-All to hundreds of thousands
(100 K) of GPUs at exascale. The next generation

NVSwitch (NVIDIA, 2023d) enables up to 256 GPUs con-
nected via high speed NVLink and makes it possible for
2DH All-to-All scaling out with m = 256. For large-scale
network topologies like dragonfly (Kim et al., 2008), 2DH
All-to-All could be further adapted to 3D by splitting inter-
node to intra-group and inter-group All-to-All according to
the network hierarchy.

A.5 Evaluation

We benchmark alltoall perf in nccl-tests (NVIDIA,
2023c) to measure the performance and correctness of All-
to-All operations. Experiment setup is as described in Sec-
tion 5. The sizes of All-to-All start from 1 KiB and end at
16 GiB, with multiplication factor 2. The tests are launched
via OpenMPI with proper NUMA binding. All of the All-
to-All operations are out-of-place and correctness is also
checked by nccl-tests. We compare the latency of specific
sizes we are interested in between different algorithms and
different implementations.

To illustrate scalability of the proposed 2DH All-to-All
algorithm, we compare it with the state-of-the-art NCCL
All-to-All in the same cluster. alltoall perf in nccl-
tests (NVIDIA, 2023c) uses the linear All-to-All algorithm
by default while we also implement the 2DH All-to-All al-
gorithm in nccl-tests to replace the original one. We scale
the experiments from 64-GPU to 4096-GPU. As shown

TUTEL: Adaptive Mixture-of-Experts at Scale

Algorithm 2 Two-Dimensional Hierarchical (2DH) All-to-All

1: procedure STRIDEMEMCPY(output, input, chunksize, row, col)
2: for i = 0; i < row × col; i++ do
3: j← i % row × col + i / col
4: output[j × chunksize : (j+1) × chunksize] ← input[i × chunksize : (i+1)

× chunksize]
5: end for
6: end procedure
7: procedure ALL2ALL 2DH(output, input)
8: // step 1: intra-node All-to-All
9: strideMemcpy(buffer, input, chunksize, ngpus per node, nnodes)

10: for g = 0; g < ngpus per node; g++ do
11: loc ← g × nnodes × chunksize, peer ← g + node rank × ngpus per node
12: ncclSend(buffer[loc], nnodes × chunksize, datatype, peer, comm)
13: ncclRecv(output[loc], nnodes × chunksize, datatype, peer, comm)
14: end for
15: strideMemcpy(buffer, output, chunksize, nnodes, ngpus per node)
16: // step 2: inter-node All-to-All
17: for n = 0; n < nnodes; n++ do
18: loc ← n × ngpus per node × chunksize, peer ← local rank + n ×

ngpus per node
19: ncclSend(buffer[loc], ngpus per node × chunksize, datatype, peer, comm)
20: ncclRecv(output[loc], ngpus per node × chunksize, datatype, peer, comm)
21: end for
22: end procedure

64 128 256
0

500

1,000

1,500

2,000

GPU Number

M
ic
ro
se
co
n
d
s
(µ
s)

1 MiB All-to-All

Linear Algo

2DH w/o Optimization

2DH w/ Optimization

2DH w/ Optim. + LL128

(a) All-to-All 1 MiB

64 128 256

2,000

3,000

4,000

GPU Number

M
ic
ro
se
co
n
d
s
(µ
s)

32 MiB All-to-All

Linear Algo

2DH w/o Optimization

2DH w/ Optimization

2DH w/ Optim. + LL128

(b) All-to-All 32 MiB

64 128 256
10

15

20

25

GPU Number

M
il
li
se
co
n
d
s
(m

s)
256 MiB All-to-All

Linear Algo

2DH w/o Optimization

2DH w/ Optimization

2DH w/ Optim. + LL128

(c) All-to-All 256 MiB

Figure 19. Comparison between NCCL and optimized implementation (Cowan et al., 2023) running 2DH All-to-All algorithm.

in Figure 18, the proposed 2DH algorithm could scale bet-
ter with lower gradient than original linear algorithm. For
small sizes (1 MiB), 2DH algorithm can achieve lower la-
tency starting from small scales. For larger sizes (32 MiB
and 256 MiB), 2DH algorithm has higher latency caused
by extra data copies. While as the GPU number scales out,
2DH algorithm could perform better. Therefore, dynamic
adaption between linear and 2DH algorithms is required.
Besides, the 2DH algorithm can scale to 4096-GPU in our
experiments while we didn’t run NCCL’s linear algorithm
successfully in such large scale.

We also study the performance gain using the custom com-
piler (Cowan et al., 2023). As illustrated in Figure 19, the
optimized implementation achieves better results than im-
plementation using NCCL’s APIs. For example, 256 MiB

size on 64-GPU, 2DH algorithm in NCCL implementation
has higher latency, but with the optimized implementation
it could still outperform linear algorithm in NCCL. Be-
sides, LL128 protocol has lower latency for small sizes (1
MiB and 32 MiB) while default protocol performs better
for large sizes (256 MiB). Therefore, dynamic adaption be-
tween different protocols is necessary with this optimiza-
tion.

B SIMT-EFFICIENT FAST ENCODE AND
DECODE

TUTEL implements sophisticated optimizations for the en-
code (generating All-to-All inputs out of MoE layer inputs
during MoE dispatch) and decode (generating MoE layer

TUTEL: Adaptive Mixture-of-Experts at Scale

Tensor shapes: logits(T,E)
gate_probs = softmax(logits)
Tensor shapes: gate_probs(T,E), idxs(T,), scores(T,)
idxs, scores = top_k(gate_probs)
Tensor shapes: locations(T,)
locations = compute_location(idxs)
Tensor shapes: locations(T,), locations1(T,Cg)
locations1 = one_hot(locations, num_classes=Cg)
Tensor shapes: gate_probs(T,E), combine(T,E,Cg)
combine = einsum("TE,TC->TEC", gate_probs, locations1)
Tensor shapes: dispatch_input(E,Cg,M),moe_input(T,M)
dispatch_input = einsum(

"TEC,TM->ECM", bool(combine), moe_input)

1
2
3
4
5
6
7
8
9

10
11
12
13

(a) Dense implementation.

Tensor shapes: logits(T,E)
gate_probs = softmax(logits)
Tensor shapes: gate_probs(T,E), idxs(T,), scores(T,)
idxs, scores = top_k(gate_probs)
Tensor shapes: locations(T,)
locations = compute_location(idxs)
Tensor shapes:
dispatch_input(E,Cg,M), moe_input(T,M)
dispatch_input = zeros((E,Cg,M))
for t in [0, 1, ..., T-1]:

Broadcast multiplication
dispatch_input[idxs[t]][locations[t]] = \

bool(scores[t]) * moe_input[t]

1
2
3
4
5
6
7
8
9

10
11
12
13

(b) Sparse implementation.

Figure 20. Comparison between dense and sparse im-
plementations of generating All-to-All dispatch input
(dispatch input) out of an MoE layer input (moe input)
and a gate function output (logits).

outputs out of All-to-All outputs during MoE combine)
stages of an MoE layer. Existing implementations of en-
code and decode need einsum operations with a large time
complexity, as described by GShard (Lepikhin et al., 2021)
and implemented in Fairseq (Ott et al., 2019). For instance,
Figure 20a shows the most heavy-weighted part of the en-
code implementation (decode is similar as encode since it
is a reverse operation of encode). We observe that this im-
plementation is unnecessarily dense as it contains a lot of
zero multiplications and additions. TUTEL addresses this
by a sparse implementation as shown in Figure 20b. Given
that T is the number of input tokens per expert, while the
time complexity of the dense version is O(T · E · Cg ·D),
the one of the sparse version is only O(T · k · D), where
T · k = E ·Cg in most cases. This indicates that the sparse
version has only 1/T of time complexity than the dense
version.

Unfortunately, it is challenging to implement efficient GPU
kernels for the sparse implementation. While the dense
computation can be dramatically accelerated by matrix
multiplication accelerators (e.g., Tensor Cores), the sparse
computation cannot leverage those accelerators efficiently.5

5Even the sparsity support by the latest hardware (e.g., 3rd-
generation Tensor Cores) cannot work efficiently as it only sup-

moe_input(T,M)

Fast Encode
locations(T,)

idxs(T,)

scores(T,)

dispatch_input
(E,Cg,M)

dispatch_output(E,Cg,M)

Fast Decode
locations(T,)

idxs(T,)

scores(T,)

moe_output
(T,M)

Forward-pass: K0
Backward-pass: K1

Backward-pass: K2

Forward-pass: K1
Backward-pass: K0

Backward-pass: K2

K0: 𝑍𝑖𝑑𝑥𝑠 𝑡 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡 , 𝑚 = 𝑋𝑡, 𝑚 ∙ 𝑌𝑡

K1: 𝑋𝑡, 𝑚 = 𝑍𝑖𝑑𝑥𝑠 𝑡 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡 , 𝑚 ∙ 𝑌𝑡

where 𝑡 ∈ 1,… , 𝑇 and 𝑚 ∈ 1,… ,𝑀 .

K2: ෍

𝑚

𝑌𝑡 = 𝑍𝑖𝑑𝑥𝑠 𝑡 ,𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑡 , 𝑚 ∙ 𝑋𝑡, 𝑚

Figure 21. Forward- and backward-pass computations of fast en-
code and fast decode operators. Parentheses refer to tensor
shapes. The tensor shapes of X, Y, and Z are (T,D), (T,),
and (E,Cg, D), respectively. idxs and locations have no
backward-pass computation as they are not trainable inputs.

tokens/step Fairseq MoE (GiB) TUTEL MoE (GiB)
4,096 3.7 2.9 (-21.6%)
8,192 6.2 3.2 (-48.4%)
16,384 16.3 4.0 (-75.5%)
32,768 57.9 5.7 (-90.2%)

Table 9. GPU memory cost for single MoE layer. (Static Settings:
D = H = 4096, top-k = 2, Eg = 2)

To tackle this issue, we implement differentiable fast en-
code and decode operators based on three specially de-
signed GPU kernels: K0, K1, and K2, as illustrated in
Figure 21. TUTEL accelerates these kernels by always as-
signing different indices of dimension T to different thread
arrays (or warps), which ensures computation for a single
token along dimension M is SIMT-efficient. By this ap-
proach, our sparse computation can actually leverage var-
ious optimizations that are applicable only for dense com-
putation, such as warp shuffling, Blelloch scan algorithm,
and element vectorization for low-precision computation
(e.g., leveraging half2 types for half-precision computa-
tion). Aggregating all the kernel optimizations, TUTEL
extremely minimizes the latency of encode and decode as
shown in Figure 15. It greatly saves GPU memory as well.
As shown in Table 9, in most cases, it achieves 20% ∼
90% memory saving. TUTEL exposes two interfaces for
these optimized computations: moe.fast encode used
by MoE dispatch and moe.fast decode used by MoE
combine.

ports fine-grained sparsity, while our sparse computation belongs
to coarse-grained sparsity (NVIDIA, 2020b).

TUTEL: Adaptive Mixture-of-Experts at Scale

Method E k f MoE APbox APmask

SwinV2-B - - - - 53.0 45.8
SwinV2-MoE-B 32 1 1.25 tuned 51.3 (-1.7) 44.4 (-1.4)
SwinV2-MoE-B 32 1 1.25 fixed 53.4 (+0.4) 46.2 (+0.4)

Table 10. The results on COCO object detection. “fixed” MoE
indicates that the MoE layers are fixed in fine-tuning.

C MORE RESULTS ON SWINV2-MOE
C.1 How to do fine-tuning on COCO object

detection?

Previous MoE models on computer vision only perform ex-
periments using image classification tasks (Riquelme et al.,
2021). It is unclear whether the sparse MoE models per-
form well on down-stream computer vision tasks as well
such as COCO object detection.

As shown in Table 10, direct fine-tuning will result in poor
performance, with -1.7/-1.4 box/mask AP drops compared
to the dense counterparts. We find that fixing all MoE lay-
ers in fine-tuning can alleviate the degradation problem,
and we obtain +0.4/+0.4 box/mask AP improvements by
this strategy.

Also note it is the first time that a sparse MoE model is
applicable and superior on the important computer vision
tasks of COCO object detection. We hope TUTEL to em-
power more down-stream AI tasks.

C.2 Ablation Study

Ablation on Number of Experts. Table 11 ablates
the effect of expert number, using different model sizes
(SwinV2-S and SwinV2-B) and a variety of vision tasks. It
can be seen that 32 and 64 perform the best, which is con-
sistent with that in previous works (Riquelme et al., 2021;
Du et al., 2022).

Comparison of Routing Algorithms and Capacity Fac-
tors. Figure 22 compares the routing methods with and
without batch prioritized routing (BPR) (Riquelme et al.,
2021). It shows that the BPR approach is crucial for
computer vision MoE models, especially at lower capac-
ity factor values. These results are consistent with reported
in (Riquelme et al., 2021).

Table 12 ablates the performance of SwinV2-MoE model
given different k and capacity factor f . It is observed that
top-1 router has a better speed-accuracy trade-off. We use
default hyper-parameters of k = 1 and f = 1.0.

C.3 A New Cosine Router Supported in TUTEL

With TUTEL, we provide more MoE baselines to enrich the
algorithm choices and to exemplify how to leverage this

1.
251

0.
9

0.
8

0.
7

0.
6

0.
5

0.
4

0.
3

0.
2

0.
1

38

36

34

32

30

Capacity Ratio f

Im
a
ge
N
et
-2
2
K

T
o
p
-1

A
cc
u
ra
cy

SwinV2-MoE-B w/ BPR

SwinV2-MoE-B w/o BPR

SwinV2-MoE-S w/ BPR

SwinV2-MoE-S w/o BPR

Figure 22. ImageNet-22K top-1 accuracy w.r.t inference capacity
factor. “w/ BPR” indicates training with batch prioritized routing
while “w/o BPR” not. All models are trained on the ImageNet-
22K dataset with E = 32, k = 1, f = 1.25 and an input resolu-
tion of 192× 192 for 90 epochs.

framework for algorithmic innovation. One attempt is a
new cosine router that hopes to improve numerical stability
with increased model size, inspired by (Liu et al., 2022):

P = Softmax(
Wx ·M
∥Wx∥ ∥M∥

/τ), (2)

where W ∈ RD×C is a linear layer used to project the input
token feature x ∈ RC×1 to dimension D (256 by default);
M ∈ RE×D is a parametric matrix, with each column rep-
resenting each expert; τ is a learnable temperature that is
set lowest 0.01 to avoid temperatures being too small; P
denotes the routing scores for selecting experts.

Our preliminary experiments in Table 13 show that when
using 32 experts, the cosine router is as accurate in image
classification as a common linear router. Although it is not
superior in image classification at the moment, we still en-
courage TUTEL users to try this option in their problems,
because: 1) its normalization effect on input may lead to
more stable routing when the amplitude or dimension of
the input feature is scaled; 2) There is a concurrent work
showing that the cosine router is more accurate in cross-
lingual language tasks (Chi et al., 2022).

TUTEL: Adaptive Mixture-of-Experts at Scale

Method E k f #param #paramact GFLOPs Train
speed

Inference
speed

IN-22K
acc@1

IN-22K
train loss

IN-1K/ft
acc@1

IN-1K/5-shot
acc@1

SwinV2-S - - - 65.8M 65.8M 6.76 350 1604 35.5 5.017 83.5 70.3
SwinV2-MoE-S 8 1 1.0 173.3M 65.8M 6.76 292 1150 36.8 (+1.3) 4.862 84.5 (+1.0) 75.2 (+4.9)
SwinV2-MoE-S 16 1 1.0 296.1M 65.8M 6.76 295 1153 37.5 (+2.0) 4.749 84.9 (+1.4) 76.5 (+6.2)
SwinV2-MoE-S 32 1 1.0 541.8M 65.8M 6.76 295 1159 37.4 (+1.9) 4.721 84.7 (+1.2) 75.9 (+5.6)
SwinV2-MoE-S 64 1 1.0 1033M 65.8M 6.76 288 1083 37.8 (+2.3) 4.669 84.7 (+1.2) 75.7 (+5.4)
SwinV2-MoE-S 128 1 1.0 2016M 65.8M 6.76 273 1027 37.4 (+1.9) 4.744 84.5 (+1.0) 75.4 (+5.1)

SwinV2-B - - - 109.3M 109.3M 11.78 288 1195 37.2 4.771 85.1 75.9
SwinV2-MoE-B 8 1 1.0 300.3M 109.3M 11.78 247 893 38.1 (+0.9) 4.690 85.3 (+0.2) 77.2 (+1.3)
SwinV2-MoE-B 16 1 1.0 518.7M 109.3M 11.78 246 889 38.6 (+1.4) 4.596 85.5 (+0.4) 78.2 (+2.3)
SwinV2-MoE-B 32 1 1.0 955.3M 109.3M 11.78 249 892 38.5 (+1.3) 4.568 85.5 (+0.4) 77.9 (+2.0)
SwinV2-MoE-B 32 2 1.0 955.3M 136.6M 11.78 206 679 38.6 (+1.4) 4.506 85.5 (+0.4) 78.7 (+2.8)
SwinV2-MoE-B 32 2 0.625 955.3M 136.6M 12.54 227 785 38.3 (+1.1) 4.621 85.2 (+0.1) 77.5 (+1.6)

Table 11. Comparison of SwinV2-MoE models and the dense counterparts (Liu et al., 2022). The sparse MoE model is obtained by
replacing the FFN of every other layer with an MoE layer. E denotes the number of experts in the MoE layer. k denotes the number of
selected experts per token. f denotes the capacity factor. The “Train speed” and “Inference speed” are measured by images per second
during training and inference. All models are trained on the ImageNet-22K dataset with an input resolution of 192 × 192. We report
the top-1 accuracy and final training loss on ImageNet-22K classification (IN-22K), the fine-tuning top-1 accuracy on ImageNet-1K
classification (IN-1K/ft) and the 5-shot linear evaluation top-1 accuracy on ImageNet-1K classification (IN-1K/5-shot). Also note that
TUTEL supports multiple GPUs to share one expert, which empowers us to leverage 32 GPUs for the experiments with expert number
as 8 and 16.

Method k Train-f Infer-f Infer
GFLOPs

Infer
speed

IN-22K
acc@1

SwinV2-B - - - 11.78 1195 37.2
SwinV2-MoE-B 1 1.0 1.25 12.54 839 38.6 (+1.4)
SwinV2-MoE-B 1 1.0 1.0 11.78 892 38.5 (+1.3)
SwinV2-MoE-B 1 1.0 0.625 10.65 976 38.2 (+1.0)
SwinV2-MoE-B 1 1.0 0.5 10.27 1001 38.0 (+0.8)
SwinV2-MoE-B 2 1.0 1.25 16.31 621 38.7 (+1.5)
SwinV2-MoE-B 2 1.0 1.0 14.80 679 38.6 (+1.4)
SwinV2-MoE-B 2 1.0 0.625 12.54 785 38.4 (+1.2)
SwinV2-MoE-B 2 1.0 0.5 11.78 826 38.3 (+1.1)
SwinV2-MoE-B 2 0.625 0.625 12.54 785 38.3 (+1.1)
SwinV2-MoE-B 2 0.625 0.5 11.78 826 38.3 (+1.1)

Table 12. Ablations of top-k and capacity factors f . “Train-f”
and “Infer-f” indicates the capacity factor during training and in-
ference. “Infer GFLOPs” and “Infer speed” indicates the GFLOPs
and real speed (images/second) during inference.

Method Router IN-22K
acc@1

IN-1K/ft
acc@1

IN-1K/5-shot
acc@1

SwinV2-S - 35.5 83.5 70.3
SwinV2-MoE-S Linear 37.4 (+1.9) 84.7 (+1.2) 75.9 (+5.6)
SwinV2-MoE-S Cosine 37.1 (+1.6) 84.3 (+0.8) 75.2 (+4.9)

SwinV2-B - 37.2 85.1 75.9
SwinV2-MoE-B Linear 38.5 (+1.3) 85.5 (+0.4) 77.9 (+2.0)
SwinV2-MoE-B Cosine 38.5 (+1.3) 85.3 (+0.2) 77.3 (+1.4)

Table 13. Comparison between the linear router and cosine router
(E = 32, k = 1, f = 1.25).

