
Humanoid: A Deep Learning-based Approach to

Automated Black-box Android App Testing

Yuanchun Li†, Ziyue Yang†, Yao Guo∗, Xiangqun Chen

Key Laboratory of High Confidence Software Technologies (Ministry of Education),

Department of Computer Science, School of EECS, Peking University, Beijing, China

{liyuanchun, ziyue.yang, yaoguo, cherry}@pku.edu.cn

Abstract—Automated input generators must constantly choose
which UI element to interact with and how to interact with it, in
order to achieve high coverage with a limited time budget. Cur-
rently, most black-box input generators adopt pseudo-random
or brute-force searching strategies, which may take very long
to find the correct combination of inputs that can drive the
app into new and important states. We propose Humanoid, an
automated black-box Android app testing tool based on deep
learning. The key technique behind Humanoid is a deep neural
network model that can learn how human users choose actions
based on an app’s GUI from human interaction traces. The
learned model can then be used to guide test input generation
to achieve higher coverage. Experiments on both open-source
apps and market apps demonstrate that Humanoid is able
to reach higher coverage, and faster as well, than the state-
of-the-art test input generators. Humanoid is open-sourced at
https://github.com/yzygitzh/Humanoid and a demo video can be
found at https://youtu.be/PDRxDrkyORs.

Index Terms—Software testing, automated test input genera-
tion, graphical user interface, deep learning, mobile application,
Android

I. INTRODUCTION

Mobile applications (apps in short) have seen widespread

adoption in recent years. These apps need to be adequately

tested before being released. However, due to the rapid re-

leasing cycle and limited human resources, it is difficult to

manually construct test cases within a short time. As a result,

automated test input generators for mobile apps have been

studied extensively in both academia and industry.

The effectiveness of a test input generator is often measured

by its test coverage. Thus the key to success for an automated

test input generator is to choose the correct interactions for a

given UI (the current UI during testing), such that the chosen

interactions may reach new and important UI states, which

in turn will lead to higher coverage in a limited time budget.

Because it is hard for a machine to understand the GUI layout

and the content within a GUI element, it is also difficult to

determine which button to click or what should be inputted. As

a result, most existing test generators [1]–[4] apply a random

strategy to decide which GUI element to interact with and how.

Although random strategies can also be further optimized, it

has inherent limitations that make it difficult to choose the

most efficient path to find the interactions that can drive the

app into important states within a short time.

† co-primary authors, ∗ corresponding author

Action Type UI Element Probability

touch 0.7

touch 0.15

touch 0.1

touch 0.02

touch 0.015

touch 0.002

touch 0.001

touch 0.001

swipe_left 0.001

swipe_right 0.001

long_touch 0.0005

Fig. 1: An illustration of how Humanoid chooses test inputs.
The left side is a screenshot of the current UI of the AUT, and the
right side enumerates the most possible interactions in the UI state.
Humanoid computes a probability for each action based on a model
learned from human interaction traces. The probability represents
how likely the action will be chosen by Humanoid as the test input.

In contrary to random input generators, human testers can

easily identify the UI elements that are worth interacting

with, even for a new app they have never seen before. The

underlying reason is that human testers are themselves app

users, so they have already gained some experience and

knowledge about various mobile apps. Thus human testers

know where to click and what to input, in order to achieve

higher coverage, and taking less time as well.

Based on this observation, we propose Humanoid, an au-

tomated GUI test generator that is able to learn how humans

interact with mobile apps and then use the learned model to

guide test generation like a human tester. With the knowledge

learned from human interaction traces, Humanoid can prior-

itize the possible interactions on a GUI page according to

their importance and meaningfulness, as illustrated in Fig. 1.

With the guidance of such a model, Humanoid is able to

generate test inputs that can lead to important states faster

than randomly generated inputs.

The core of Humanoid is a deep neural network model that

predicts which UI elements are more likely to be interacted

with by human users and how to interact with it. The input of

1070

2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)

978-1-7281-2508-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ASE.2019.00104

the model is the current UI state as well as the most recent

UI transitions, while the output is the predicted probability of

each possible action on the UI page, which can be used to

guide the test input generation process.

We implemented Humanoid and trained the interaction

model with 304,976 human interactions extracted from a large-

scale crowd-sourced UI interaction dataset Rico [5]. We com-

pared Humanoid with six state-of-the-art test generators. The

apps used for testing include 68 open-sourced apps obtained

from the AndroTest [6] dataset and 200 popular apps from

Google Play. The results showed that Humanoid was able to

achieve 43.1% line coverage for open-source apps and 24.1%

activity coverage for market apps, which was significantly

higher than the best results (38.8% and 19.7%) achieved by

other test generators using the same amount of time.

II. TOOL DESIGN

The core of Humanoid is an interaction model that learns the

patterns about how humans interact with apps. Based on the

model, the whole workflow can be separated into two phases,

including an offline phase for training the model with human-

generated interaction traces and an online phase in which the

model is used to guide test input generation.

A. Model Training

End-users interact with an app based on what they see on

the app’s interface (i.e., GUI). Since different apps often share

common UI design patterns, it is intuitive that the way how

humans interact with GUI can generalize across different apps.

The goal of our proposed interaction model is to capture such

generalizable patterns.

We introduce a concept UI context to model what humans

reference when they interact with an app. A UI context

contexti consists of the current UI state si and three latest

UI transitions (si−1, ai−1), (si−2, ai−2), (si−3, ai−3). The

current UI state represents what the users see when they

perform the action, while the latest UI transitions are used

to model the users’ underlying intention during the current

interaction session.

Each UI state is represented as a two-channel UI skeleton

image, in which the first channel renders the bounding box

regions of text UI elements and the second channel renders the

bounding box regions of non-text UI elements. Each action is

represented by its action type and target location coordinates.

The action type is encoded as a seven-dimensional vector, in

which each dimension maps to one of the seven action types

as described earlier. The action target location is encoded as

a heatmap. Each pixel in the heatmap is the probability of the

pixel being the action target location.

Thus, the representation of a UI context, i.e., the input for

our interaction model, is a stack of images including one 2-

channel image for the current UI state and three 3-channel

images for three latest UI transitions (each transition include

one 2-channel image for the UI state and one 1-channel image

for the action). All images are scaled to the size of 180×320
pixels. For ease of learning, we also add one channel of zero

padding for the current UI state. In the end, a UI context is

represented as a 4×180×320×3 vector.

Given the UI context vector, the output of the interaction

model are two conditional probability distributions:

1) ptype(t | contexti), representing the probability dis-

tribution of t, the type of the next action, where t ∈
{touch, long touch, swipe up, ...}.

2) ploc(x, y | contexti), representing the probability dis-

tribution of screen coordinates x, y being the target of

the next action, where 0 < x < screen width and

0 < y < screen height.

The probability of each action on the current UI state can be

calculated with:

p(action) = ptype(action.type) ∗
∑

x,y in action.element

ploc(x, y)

Then, the action probabilities can be used to guide test input

generation.

Fig. 2 shows the deep neural network model used to learn

the two conditional probability distributions defined above. It

accepts the representation of the current UI context contexti
as input, and outputs location and type distributions of ai.

The model uses convolutional layers to capture the GUI visual

information and residual LSTM modules to capture the inter-

action context information. The de-convolutional layers and

the fully connected layers are used to generate the distribution

of ai’s location and type respectively.

The dataset we used to train the interaction model is

processed from Rico [5], a large crowd-sourced dataset of

human interactions. We extracted 12,278 interaction flows

belonging to 10,477 apps, and each interaction flow contained

24.8 actions on average. During training, the probability of

the action taken by the human users is set to 1, while the

probabilities of other actions are set to 0.

B. Guided Test Generation

Humanoid uses a GUI model to save the memory of

transitions. The GUI model is represented as a UI transition

graph (UTG), whose nodes are UI states and edges are the

actions that lead to UI state transitions.

Humanoid generates two types of test inputs, including

exploration actions that are used to discover the unseen

behaviors in an app, and navigation actions that drive the app

to known states that contain unexplored actions.

In each step, Humanoid checks whether there are unex-

plored actions in the current state. Humanoid chooses explo-

ration if there are unexplored actions, and chooses navigation

if the current state is fully explored. The navigation process is

straightforward. In the exploration process, Humanoid gets the

probabilities of the actions predicted by the interaction model,

and makes a weighted choice based on the probabilities.

Since the actions that humans would take will be assigned

higher probabilities, they get higher chances to be chosen

by Humanoid as test inputs. Thus the inputs generated by

Humanoid are more human-like than randomly chosen ones,

which in turn will drive the app into important UI states faster

and lead to higher test coverage.

1071

Fig. 2: The architecture of the interaction model in Humanoid.

III. EVALUATION

We evaluated Humanoid by using it to conduct testing of

two different sets of Android apps, including 68 open-source

apps obtained from AndroTest [6] and 200 popular commercial

apps downloaded from Google Play. We measured the test

coverage and test progress of Humanoid and compared the

results with six state-of-the-art testing tools, including Monkey

[1], PUMA [7], Stoat [8], DroidMate [9], Sapienz [10] and

DroidBot [11].

The machine we used to conduct the experiments is a

workstation with two Intel Xeon E5-2620 CPUs, 64GB RAM

and an NVidia GeForce GTX 1080 Ti GPU. Training the

interaction model took about 66 hours. When applying the

model, we ran 4 instances of Android emulators on the

machine to test apps in parallel.

We used each testing tool (with their default configuration)

to run each app for a fixed length of time on an Android

emulator (1 hour for each open-source app and 3 hours

for each market app because market apps are usually more

complicated). In order to accommodate the recent market apps,

most of the tools were evaluated on Android 6.0. However, as

Sapienz is close-sourced and only supports Android 4.4, so it

was evaluated on Android 4.4 instead. For each app and tool,

we recorded the final coverage and the progressive coverage

after each action was performed. We repeated this process

three times and used the average as the final results.

When testing open-source apps, the test coverage achieved

by each testing tool was almost converged in 1 hour. The

overall comparison of the final line coverage is shown in

Fig. 3. On average, Humanoid achieved a line coverage of

43.1%, which was the highest across all test input generators.

Based on manual inspection of the test traces, the high

coverage of Humanoid was mainly due to two reasons: First,

Humanoid was able to identify and prioritize the critical UI

elements when there were plenty of UI elements to choose

from. Second, Humanoid had a higher chance to perform a

meaningful sequence of actions, which can drive the app into

Maximum
Outlier

Median

75th percentile

Mean

25th percentile
Minimum

Fig. 3: Line coverage of different tools for open-source apps.

unexplored core functionalities.

It is interesting to see that Monkey, which adopts a random

exploration strategy, achieved higher coverage than all other

model-based testing tools except Humanoid. The fact that

Monkey performs better than most other testing tools has also

been confirmed by other researchers [6]. The main reason is

that Monkey is able to generate much more inputs than other

tools within the same amount of time.

We further conducted experiments on the market apps to

see whether Humanoid is still more effective. Since the source

code is not available for these market apps, we were unable to

compute the line coverage, thus we used the activity coverage

(percentage of reached activities) instead.

The final activity coverage achieved by the testing tools

in 3 hours is shown in Fig. 4. Similar to open-source apps,

Humanoid also achieved the highest coverage (24.1%) as

compared with other tools.

Fig. 5 shows the progressive coverage w.r.t. the number of

1072

Fig. 4: Activity coverage of different tools for market apps.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

0 100 200 300 400 500 600

Li
ne

C
ov

er
ag

e

Number of input events

Monkey PUMA
Stoat DroidMate
DroidBot Humanoid

(a) Open source apps

0%

5%

10%

15%

20%

25%

30%

0 400 800 1200 1600 2000

A
ct

iv
ity

 C
ov

er
ag

e

Number of input events

Monkey PUMA
Stoat DroidMate
DroidBot Humanoid

(b) Market apps

Fig. 5: Progressive coverage of different tools.

input events sent by each testing tool. Note that we did not

include Sapienz in the progressive coverage figures because

it sends events too fast and we could not slow it down as

it was close-sourced. In the first few steps, the line coverage

of all testing tools increased rapidly, as the apps were just

started and all UI states were new. Humanoid started to lead

after about 50 events. That was because the easy-reachable

code was already covered at that point, and the other states

were hidden behind specific interactions that can hardly be

produced by other testing tools. The coverage for some apps

was not converged at the end of testing due to the complexity

of these apps. However, we believe that Humanoid will keep

the advantage even with longer testing time.

IV. RELATED WORK

Automated GUI test generation has become an active re-

search area since the prevalence of mobile apps. Most test

generators adopt three types of strategies: random, model-

based, and targeted.

A typical example using the random strategy is Monkey [1],

which sends actions without any information from the app.

DynoDroid [2] filters out unacceptable events based on the

GUI layout. Sapienz [10] uses a genetic algorithm to search

for the test sequences that can achieve higher coverage.

Several other testing tools build and use a GUI model of

the app to generate test input [7], [11], [12]. Based on the

GUI models, testing tools can generate inputs that can quickly

navigate the app to unexplored states. Model-based strategies

can also be optimized. For example, Stoat [8] can iteratively

refine the test strategy based on existing explorations, and

DroidMate [9] can infer acceptable actions for a UI element

by mining from other apps.

The targeted strategy is designed to address the problem

that some app behavior can only be revealed with specific test

inputs. These testing tools [13], [14] usually use sophisticated

techniques such as data flow analysis and symbolic execution

to find the interactions that can lead to the target states.

Humanoid is different from these approaches as it utilizes

the GUI visual information, which is an important reference

when human users or testers are exploring an app.

V. CONCLUSION

This tool demonstration paper introduces Humanoid, a new

GUI test generator for Android apps that is able to gener-

ate human-like test inputs through deep learning. Humanoid

adopts a DNN model to learn how human users navigate

through an app, from a large set of human-generated inter-

action traces. Experiments show that, with the guidance of

the learned model, Humanoid is able to achieve higher test

coverage, and faster, than six state-of-the-art testing tools.

ACKNOWLEDGMENT

This work was partly supported by the National Key Re-

search and Development Program (2017YFB1001904) and the

National Natural Science Foundation of China (61772042).

REFERENCES

[1] “Android Developers, UI/Application Exerciser Monkey,” 2012.
[2] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation

system for android apps,” in FSE 2013.
[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in ASE 2012.

[4] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui testing
using multi-level gui comparison criteria,” in ASE 2016.

[5] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li,
J. Nichols, and R. Kumar, “Rico: A mobile app dataset for building
data-driven design applications,” in Proceedings of the 30th Annual ACM

Symposium on User Interface Software and Technology, 2017.
[6] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gener-

ation for android: Are we there yet?” in ASE 2015.
[7] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:

Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in MobiSys 2014.

[8] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
FSE 2017.

[9] N. P. Borges Jr, M. Gómez, and A. Zeller, “Guiding app testing with
mined interaction models,” in Proceedings of the 5th International

Conference on Mobile Software Engineering and Systems, 2018.
[10] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated

testing for android applications,” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, 2016.
[11] Y. Li, Z. Yang, Y. Guo, and X. Chen, “Droidbot: A lightweight ui-guided

test input generator for android,” in Proceedings of the 39th International

Conference on Software Engineering Companion, 2017.
[12] W. Wang, D. Li, W. Yang, Y. Cao, Z. Zhang, Y. Deng, and T. Xie,

“An empirical study of android test generation tools in industrial cases,”
in Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, 2018.
[13] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic

testing of smartphone apps,” in FSE 2012.
[14] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for

systematic testing of android apps,” in OOPSLA 2013, 2013.

1073

