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Abstract—Personalized services are in need of a rich and
powerful personal knowledge base, i.e. a knowledge base con-
taining information about the user. This paper proposes an
approach to extracting personal knowledge from smartphone
push notifications, which are used by mobile systems and apps
to inform users of a rich range of information. Our solution
is based on the insight that most notifications are formatted
using templates, while knowledge entities can be usually found
within the parameters to the templates. As defining all the
notification templates and their semantic rules are impractical
due to the huge number of notification templates used by
potentially millions of apps, we propose an automated approach
for personal knowledge extraction from push notifications. We
first discover notification templates through pattern mining, then
use machine learning to understand the template semantics.
Based on the templates and their semantics, we are able to
translate notification text into knowledge facts automatically.
Users’ privacy is preserved as we only need to upload the
templates to the server for model training, which do not contain
any personal information. According to experiments with about
120 million push notifications from 100,000 smartphone users,
our system is able to extract personal knowledge accurately and
efficiently.

Index Terms—Personal data; knowledge base; knowledge ex-
traction; push notifications; privacy

I. INTRODUCTION

Push notifications are widely used on mobile devices such
as iPhone or Android smartphones. A push notification is a
message that pops up on a mobile device and can be used for
multiple purposes, such as SMS or social networking updates
(e.g. your friend Alice sent you a message), travel schedule
changes (e.g. your flight to Beijing is canceled), and shopping
order delivery messages (e.g. the clothes you purchased has
been shipped), just to name a few. Each user receives about
63.5 notifications per day on his/her smartphone[1].

This paper proposes an approach to extracting personal
knowledge (<user, relation, entity> triples) from
smartphone push notifications. Personal knowledge is a struc-
tured form of data that contains information about users’
profile, behaviors, interests, etc. Such knowledge is important
and useful for various mobile applications and mobile ser-
vices, such as recommender systems [2], [3], virtual personal
assistants [4], and authentication systems [5]. Researchers have
also proposed methods for extracting personal knowledge from
various other kinds of data sources such as user utterances

[6] and communication logs [7]. In fact, many companies,
especially smartphone vendors, have already started to make
use of the personal knowledge extracted from different sources
on smartphones to provide better services (e.g., emails, SMS
messages and calendars). For example, Google1 extracts and
summarizes flight and hotel reservation information from
emails with markup [8]. Apple Siri2 reads users’ calendar
events to answer questions like “when is my next appoint-
ment”. However, these approaches only deal with specific
categories of personal knowledge, where the information is
well-structured or programmatically available. Compared to
them, push notifications are a more natural source of personal
knowledge as they act like a proxy to many other data sources.

Extracting personal knowledge in general on smartphones
is a difficult task. On one hand, there exists abundant personal
information on smartphones, which can be exploited for many
apps to provide better services to end users. On the other hand,
it is not desirable to obtain full permissions to access personal
information directly as protecting user privacy has also become
a first-order priority for mobile apps [9].

In contrast, using push notifications as sources for personal
knowledge offers several key benefits. First, push notifications
contain and summarize a rich range of important personal
information, such as user profiles, social relationships and
information on everyday life. Second, push notifications are
well-structured, as most of them are generated automatically
using fixed templates, thus simplifying the task of extracting
useful information from them. Third, notifications offer a
uniform way of accessing data siloed across many apps.

Similar to the general knowledge base population (KBP),
extracting personal knowledge from push notifications can
be viewed as a slot filling task [10]. The entities related to
the user (e.g. the Twitter accounts that the user follows, the
products that the user purchases, etc.) are reserved as slots, and
the goal of personal knowledge extraction is to collect entity
values (slot fillers) from the large-scale push notifications. The
state-of-the-art approaches [11], [12] for slot filling model
the problem as a sequence labeling task and use RNNs to
find both the boundaries and labels of slot fillers. However,

1https://developers.google.com/gmail/markup/google-now
2https://www.apple.com/ios/siri/



the entity values of personal knowledge in push notifications
are often arbitrary phrases (e.g. @realDonaldTrump, iPhone X
64G Silver, etc.), making it extremely hard to find the entity
boundary through sequence labeling.

A more straightforward solution is to define a template for
each kind of push notifications manually, one that captures
the semantics embodied in the notification. Once we have
these templates, it becomes very easy to identify the relevant
notifications and extract the related components to form a
database of personal knowledge about the user. For example,
here is a typical notification template: “Dear $param1, here
are some $param2 job opportunities for you”. Besides the
structure, we can easily understand that $param1 is the name
of the user, $param2 is the user’s profession, and the user
is hunting for jobs. Applying this rule to a specific push
notification “Dear David, here are some software engineer
job opportunities for you”, we are able to extract the pa-
rameters (David and software engineer) and gener-
ate knowledge triples: <user, name, David>, <user,
profession, software engineer>, and <user,
status, job_hunting>.

However, the above mentioned solution require defining the
patterns or templates manually, and as such does not scale
well, especially as the number of apps increases. Each of
these apps might use a different template to construct their
notifications. To solve this challenge, this paper proposes
an automated approach to identify notification templates and
to learn their semantics. Specifically, our proposed approach
includes the following steps: it first discovers the notification
templates on the device, then uploads the templates to the
server for offline learning to train a model to understand the
semantic meaning of each template, and finally, it is able to
extract personal knowledge based on the server-trained model.

We achieve the following goals with the proposed approach:
(1) we are able to automatically identify the templates for
different types of notifications, including formerly unseen new
templates; (2) we can also understand the meaning of each
new template through an offline learning phase; (3) because
we only need the templates (without specific user information)
to train the model, we do not need to send sensitive user
information out of the devices, thus helping preserve user
privacy during the whole process.

To evaluate our approach, we conducted experiments on
around 120 million real notifications from 100,000 smartphone
users. The results show that our system is able to discover
notification templates with a precision of 86.8% and under-
stand the semantics of unseen templates accurately (around
83% F1-score for templates of new apps and 91% F1-score for
new templates of existing apps). We also demonstrate that the
discovered templates and the semantic model can be directly
used to extract personal knowledge from push notifications.

This paper makes the following main contributions:
• To the best of our knowledge, this is the first work to pro-

pose that push notifications can be used as a data source
for personal knowledge extraction on mobile devices such
as smartphones. We also introduce an automated and

privacy-preserving method to extract personal knowledge
from push notifications.

• We implement a prototype system for personal knowl-
edge extraction on Android. The system can run on
smartphones to support personalized services such as
recommender systems and virtual personal assistants.

• We evaluate our approach on around 120 million real-
world push notifications from 100,000 users. The results
show that our method is able to extract personal knowl-
edge with a high accuracy.

II. BACKGROUND

A. Push Notifications

Push notifications serve as a core feature for mobile devices
such as smartphones and tablets. They are mainly used by
the operating system and smartphone apps to inform users
of various of events, such as the availability of a software
update, the arrival of a message, the status update of an online
purchase, the recommendation of news and articles, etc. As
notifications can be displayed without activating the apps’
normal UI, they are a preferable way used by app developers
to deliver information to users promptly. As a result, push
notifications sometimes contain valuable information.

The content of smartphone push notifications can be gener-
ated either locally or remotely. Most operating systems provide
APIs for apps to display notifications locally. For example,
Android allows apps to define a Notification instance,
set a title and a text body, and send it as an Intent to display.
Most notifications of system events such as alarms and device
status updates are generated with this method. Many systems
and third-party services also provide a way for developers to
construct notifications on the server, then push them to the
client devices. Remotely-generated push notifications are more
dynamic and less structured as compared to local notifications,
since any online-service notifications such as messages, news,
and advertisements can be generated remotely.

Most push notifications are automatically generated with
templates. However, because each push notification typically
contains personalized content, an app can customize the tem-
plate parameter for each user to achieve this goal, while
the templates remain the same across different users. Thus,
it is possible to extract the personal information from push
notifications once we know the templates.

B. Knowledge representation

Existing knowledge bases such as YAGO [13], Freebase
[14] and Google Knowledge Graph [15] use relational knowl-
edge representations. Information is modeled in the form of
entities and relations between them. Such kind of representa-
tion has been widely used in the area of logic and artificial
intelligence [16].

The W3C Resource Description Framework (RDF) [17]
defines an abstract syntax for relational information repre-
sentation. The core structure of the abstract syntax is a set
of subject, predicate, object (SPO) triples, where subjects
and objects are entities, while predicates are defined as the



TABLE I: The ontology of the personal knowledge considered in this paper. We considered 11 types of knowledge relations
(column 2) in 4 categories (column 1). For each relation, we show several examples of entities (column 3) and a sample
notification text (column 4). Note that the examples are simplified (and translated) for better presentation.

Category Relation Example entities Example notification

User profile

name Alice, Bob1997, ... Hi Alice, here are some recommended reads for you.
gender male, female, ... Dear Mr. Li, please review your receipt.
profession doctor, software engineering, ... 7 software engineer positions for you: ...
status in college, job hunt, ... Facebook: found 9 classmates in Stanford University.

Social follows Justin Bieber, @realDonaldTrump, etc. Justin Bieber posted a new photo.
isFriendOf Candy’s Mother, David, etc. David sent you a message: ...

Location livesNear Beijing, MIT campus, etc. Beijing weather today: 6 C, sunny.
travelsTo Sweden, Tokyo, etc. Flight CU1234 from Beijing to Tokyo is going to take off.

Shopping
purchases iPhone X 64G Silver, milk powder, etc. Your order iPhone X 64G Silver has been shipped.
wantsToBuy NIKE Men’s Roshe Run Size 10, beer, etc. The beers in your shopping cart is on sale.
visitsMerchant Walmart, Wendy’s, etc. Thank you for shopping at Walmart.

relations between them. All existing knowledge bases can be
represented with such SPO triples.

Similar to the world’s general knowledge bases, the facts
in personal knowledge bases can also be represented as SPO
triples. Li et al. [6] represent personal knowledge as a user-
centered graph, in which the subjects of all knowledge triples
are the user. They follow the Freebase semantic knowledge
graph schema, including 18 types of <user, relation,
entity> triples, such as <user, place_of_birth,
New York City>, <user, parents, Rosa>, etc. We
follow the definition of Li et al., but we use a different set of
relations that frequently appear in push notifications.

The ontology of the personal knowledge considered in this
paper is shown in Table I. we consider four common categories
of personal knowledge, including user profile, social relation-
ship, location and shopping. Other categories of knowledge
can be easily added in the future.

III. PERSONAL KNOWLEDGE EXTRACTION

We propose an automated approach to extract personal
knowledge facts from push notifications on smartphones. The
problem is defined as follows. Suppose there are a set of
smartphone users, each with a list of push notifications. Our
goal is to extract knowledge triples (<user, relation,
entity>) from the notification content for each user, with
little-to-none manual efforts.

Of course, developers can always define templates manually.
However, because there are too many notifications, it takes a
lot of efforts to manually identify and define all the different
templates for all apps. Moreover, there are always new tem-
plates, which cannot be covered by existing templates defined
manually. In contrast, we expect that an automated approach
can identify new notification templates automatically, as well
as the meaning for each notification.

Our approach is mainly based on the observation that
knowledge is formatted into notifications with templates.
The templates can then help identify knowledge entities and
understand their meanings as well. We aim to identify the
notification templates automatically, and then understand their
structure and meanings through machine learning.

A. Approach Overview

Figure 1 shows an overview of our proposed approach in
extracting personal knowledge from push notifications. The
approach consists of three phases: template learning, template
understanding, and knowledge extraction. The template learn-
ing phase runs on the server and the other two phases run on
users’ devices. The main purpose of template learning is to
train a machine learning model to understand the semantics
of notification templates. Then in the template understanding
phase, the trained model can be used to infer what types of
personal knowledge triples that each notification template may
express. The discovered templates and the inferred semantics
are then used to identify template parameters (i.e. entities)
from notification text and generate personal knowledge triples.

Consider an example notification with order shipping in-
formation: “Your order iPhone X has been shipped”. For
each type of notification, we assume that there are other
similar notifications on the device, such as “Your order Nike
Running Shoes has been shipped”. By mining patterns from all
notifications, we can discover the template for this notification:
“Your order $param has been shipped”, where $param is
a parameter to the template. The template parameters are
potentially personal knowledge entities, as they are usually
customized for different users.

However, discovering the template of a notification is
only the first step. Once we extract the relevant elements
from a notification, we still need to understand the meaning
of each component from the notification. In order to infer
whether the template is a personal knowledge template and
what knowledge triples the template may have, we use a
server-trained semantic model to understand the template. The
semantic analysis is modeled as a multi-label classification
problem: given a notification template, predict what kinds
of personal knowledge triples it may express. Specifically,
given the template “Your order $param has been shipped”,
the semantic model will predict a purchases relation for
param, which leads to a knowledge triple templates <user,
purchases, $param>. The model will also try to predict
no-parameter knowledge triples (such as <user, gender,
male>) based on the whole template.

The mapping from the notification template to the knowl-
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Fig. 1: An overview of our approach. On each user’s device, we first identify templates from the notifications, then infer
template semantic rules using a server-trained semantic model. The templates and semantic rules are used to identify personal
knowledge entities and generate knowledge triples.

edge triple templates is referred to as a template semantic
rule in this paper. By applying the template semantic rule to
the original notification content, we are able to extract the
knowledge triples: <user, purchases, iPhone X>.

The whole process introduces two main challenges: dis-
covering notification templates and understanding template
semantics. The following sections describe how we solve
these problems through pattern mining and machine learning,
respectively.

B. Template Discovering

The purpose of template discovering is to recover the tem-
plates that are used by app developers to generate notifications.
There are two main challenges in discovering the templates.
The first is that templates vary quite a bit in terms of personal
data used, across different apps, and across different app
versions. Altogether, these differences make it impractical,
if not impossible, to manually summarize a complete list
of templates. The second challenge is that the notifications
on users’ smartphones are usually privacy-sensitive. Thus
uploading all notifications to a server for joint analysis is
undesirable because it may cause the leakage of personal
information.

In our solution, the template discovering process runs lo-
cally on each user’s smartphone. It aims to identify templates
that have at least two instances (i.e. two notifications gener-
ated from the same template) on a user device. The whole
process involves several steps including notification filtering,
notification clustering, and template extracting, as illustrated
in Figure 2.

1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!
8. Click for best sales now =>>>
9. Click for best sales now =>>>

1. Notification Filtering

1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
------------------------------------------------------------------------------
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!

2. Notification Clustering

1. Dear Alice, your order [iPhone X] has been delivered!
2. Dear Alice, your order [milk powder] has been confirmed!
3. Dear Alice, your order [Canon EOS …] has been confirmed!
4. Dear Alice, your order [Google Pixel 2] has been delivered!
5. See T-shirt recommendations for you!
6. See sports shoes recommendations for you!
7. See smart watch recommendations for you!

Cluster 1

Cluster 2

1. Dear $param1, Your order [$param2] has been delivered!
2. Dear $param1, Your order [$param2] has been confirmed!
3. See $param1 recommendations for you!

3. Template Extracting

Fig. 2: An illustration of the template discovering process



1) Notification Filtering: We first preprocess the notifi-
cations by filtering out duplicated and unstructured ones.
Duplicated notifications are typically system events or adver-
tisements that usually do not contain personal knowledge.

Unstructured notifications, i.e. notifications generated with-
out a template, are mainly messages or emails from other
users. We identify and remove such notifications with several
heuristics rules, for example checking the host app against a
list of messenger apps and/or matching the notification text to
known patterns, such as “[NEW MAIL](.+)”.

2) Notification Clustering: After filtering, most of the re-
maining notifications are generated with templates. Given the
fact that a template is a common subsequence of the notifica-
tions generated with it, extracting templates from notifications
is similar to the task of longest common subsequence (LCS)
mining. However, mining LCS from these notifications can
still be hard, as the notifications may be significantly different
from each other. A common solution, as used by Fu et al. [18]
for log analysis, is clustering the items before mining patterns
from each cluster. Inspired by their work, we first cluster the
notifications before extracting templates from them.

We choose DBSCAN [19] as the clustering algorithm as
the exact number of clusters is unknown. The distance metric
we used in DBSCAN is the edit distance, where each edit
operation can be adding, deleting, or replacing one word.
This is intuitive as the notifications are originally generated
from templates by simple editing (adding entity values as
parameters).

As shown in Figure 2, each group of notifications after
clustering are generated with one template or several very
similar templates. This step also filters out a good deal of
noisy data, i.e. notifications not belonging to any cluster.

3) Template Extracting: To extract notification templates,
we first mine longest common subsequences (LCS) in each
cluster of notifications. For example, the longest common
subsequence extracted from cluster 1 in Figure 2 is “Dear
Alice, your order $param1 has been $param2”. “iPhone
X” and “milk powder” are possible values of $param1, while
“delivered” and “confirmed” are possible values of $param2.

Unfortunately, the LCS cannot be directly used as notifi-
cation template. First, the user name “Alice”, which should
be a parameter in the template, is not correctly identified.
Second, “delivered” and “confirmed” are identified as param-
eter values, but they are not personal entities and should be a
part of template. The two mistakes are both due to parameter
misidentification, i.e. parameters misidentified as template text
or template text misidentified as parameter.

We introduce global word frequency to address the problem.
The global frequency of a word is the number of users having
at least one notification containing this word. The parameter
values such as “Alice” and “iPhone” are usually user-specific,
thus should have low global frequencies, while template words
such as “delivered” and “confirmed” should have high global
frequencies as they are usually user-agnostic. Based on the
global word frequencies, we are able to extract two templates
from the cluster: “Dear $param1, your order $param2 has

TABLE II: Examples of template semantic rules. The first
column shows the examples of notification templates. The sec-
ond column lists the templates of knowledge triples extracted
from the notification. u, $p1 and $p2 are short for “user”,
“parameter 1” and “parameter 2”.

Notification template Knowledge triple templates
Good news! $p1 is on sale! -
Your flight to $p1 is delayed. <u, travelsTo, $p1>
Hi $p1, your order $p2 has been
shipped.

<u, name, $p1>
<u, purchases, $p2>

Mr. $p1, please review the receipt. <u, name, $p1>
<u, gender, male>

Here are some $p1 job
opportunities for you.

<u, profession, $p1>
<u, status, job_hunt>

been shipped” and “Dear $param1, your order $param2 has
been delivered”. To guarantee user privacy, notification words
are hashed before uploading to server to calculate global word
frequencies.

Finally, the notification templates extracted on user devices
are uploaded to the server to determine the final set of
templates. As templates used by each app are typically the
same for different users, our approach only requires a small
portion of users to discover templates on their devices and
share the templates. Other users can directly download and use
the templates without running the template discovering phase.
Meanwhile, sharing the templates should have little impact on
privacy since the template itself does not contain any personal
information.

C. Template Semantic Rules

The discovered notification templates can be used to un-
derstand the sentence structure of the notifications. To extract
personal knowledge, we will need to further understand the
semantics of each template.

Knowledge extraction in this kind of scenarios is typically
modeled as as a slot filling problem [10]: given a document
and a slot to fill (i.e. a knowledge triple with a pending entity),
finding the boundaries of the slot filler (i.e. identifying the
entity value). The accuracy might be low if the document is
poorly structured [10]. Our approach can easily understand
the sentence structure with the help of notification templates.
Thus the slot filling task is largely simplified: we do not need
to determine the entity boundaries as they are automatically
given by templates.

Due to the simplification, we are able to construct rules to
extract knowledge from push notifications based on their tem-
plates. We introduce template semantic rules to help convert a
notification to personal knowledge triples. A template semantic
rule is defined as a mapping from a notification template to a
list of knowledge triple templates (KTTs in short).

There are two types of KTTs considered in our approach,
including 0-parameter KTTs and 1-parameter KTTs. An 1-
parameter KTT can be used to generate different knowledge
triples based on what parameter is used for the entity value.
For example, <user, travelsTo, $param> can use
different location names (such as New York City, China,



etc.) as the parameter. <user, purchases, $param>
can use different product names (such as iPhone X, Nike
Shoes, etc.) as the parameter. A 0-parameter KTT is a
template with a fixed entity value, which can only generate
one type knowledge triple. 0-parameter KTTs are suitable
for attributive knowledge triples such as <user, gender,
male>, <user, status, job_hunt>, etc.

Table II shows some examples of template semantic rules.
For example, “Good news! $param1 is on sale” does not map
to any personal knowledge triple. “Here are some $param1
job opportunities for you” is a personal knowledge tem-
plate that maps to two knowledge triple templates (KTTs),
including one 1-parameter KTT (<user, profession,
$param1>) and one 0-parameter KTT (<user, status,
job_hunt>). With the template semantic rules, we are able
to extract personal knowledge triples by filling parameter
values into the parameter slots of KTTs.

D. Automated Template Semantic Rule Generation

Although manually labeled semantic rules are the most
accurate when used to understand notifications formatted with
known templates, there might be a lot of unseen templates
used by different or newer versions of apps. It is time-
consuming and impractical to manually label semantic rules
for all templates, as they may be generated by potentially
millions of different apps. Thus, we extend our system to
automatically generate semantic rules for unseen templates,
based on a set of manually defined semantic rules for known
templates.

We model the problem as a sequence classification problem:
given a notification template, predict what knowledge triple
templates (KTTs) it may represent.

We use an RNN-based method to address the problem.
Figure 3 illustrates our model for automated semantic rule
generation. For each notification template, we first represent
each word in the template as a vector through word em-
bedding. We use an existing word embedding model pre-
trained with fastText [20], which is able to generate reasonable
word embeddings for unseen words. Reusing the pre-trained
model enables us make use of the meanings of words learned
from large corpus, thus facilitates training our model with
relative small dataset. The word vectors are then fed into a Bi-
LSTM network, with which each word has a node capturing
information from prefix words as well as a node capturing
information from suffix words. By concatenating the output
of the two nodes for each parameter, we can generate a vector
representation of the parameter. Similarly, the whole template
is represented as the concatenation of the outputs of the last
word’s forward node and the first word’s backward node.
Finally, the parameter vector of each parameter is used to
predict 1-parameter KTTs, i.e. the knowledge triples that
use the parameter as the entity value. The template vector is
used to predict 0-parameter KTTs.

We use the manually labeled semantic rules (mappings from
notification templates to knowledge triple templates) as to train
the model. The trained model is used to predict knowledge

triple templates for unseen templates. Both the automatically-
predicted and manually-labeled semantic rules are used to
extract knowledge triples from push notifications.

IV. IMPLEMENTATION AND EVALUATION

We implemented two versions of the proposed knowledge
extraction mechanism for production and experiments respec-
tively:

1) The production version is implemented as an Android
app. The app runs as a background service, collecting
received notifications, identifying the template for each
notification, and extracting personal knowledge from it.
The service also provides APIs for other apps to access
the personal knowledge base.

2) The experiment version is implemented entirely on a
server. It takes a centralized dataset with all user noti-
fications as the input and extract knowledge triples for
each user. However, we simulate the situation of the
production version where the notifications are distributed
on each user device, by processing each user data
separately. This version of implementation is easier for
conducting experiments as it does not require users to
install our app.

We evaluated our proposed approach by primarily looking
at two aspects:

1) Can our system discover new personal knowledge tem-
plates from smartphone notifications accurately?

2) Can our system understand the meaning of the templates
accurately, especially previously unseen templates?

To answer these questions, we conducted experiments on a
dataset of push notifications from real users.

A. Dataset Overview

The dataset we used in the experiments contains
119,289,901 notifications from 100,000 smartphone users,
obtained through a mobile service provider in China. As these
notifications may contain sensitive user information, all data
have been collected from a group of designated test users
in accordance with the policies of the service provider. We
have strictly followed the “terms and conditions” specified by
the smartphone provider with respect to these test users in
our study. For example, the identities of all users have been
anonymized, while all push notifications have been kept on the
servers within the provider’s company throughout the whole
process.

The notifications were generated by 2,658 apps during 30
days from March to April 2018. Each notification entry is
consisted of:

• A user ID: the unique identifier of the sampled smart-
phone. User IDs are anonymized for security reasons.

• An app ID: the unique identifier of the app that the
notification belongs to.

• A timestamp: the time when the notification was pushed
to the user’s smartphone.
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Fig. 4: Statistics of the dataset used for experiments

• Notification content: the notification title followed by the
text body. All numbers in the notifications are elided for
security and privacy reasons.

Figure 4a shows the distribution of the number of noti-
fications per user in our dataset. Most users (around 50%)
have more than 1000 notifications and about 20% of the
users have more than 2000 notifications. On average, there
are about 40 notifications for each user per day in our dataset,
which is a subset of users’ notifications. The reason is that we
have only obtained the notifications that are pushed through
a certain service provider, instead of all the notifications on
a smartphone. However, while there is some bias in our data
set, we believe that our technique can still generalize.

B. Accuracy of Notification Template Discovering
We simulated the scenario that the notifications are dis-

tributed on users’ smartphones, and used the template discov-
ering method described in Section III-B to identify notification
templates.

In total, we discovered 2,788 templates belonging to 409
apps from the dataset. We manually labeled the discovered
templates, determining whether each template contains per-
sonal knowledge and whether it is correct (by correct we mean
that the template correctly identifies the boundaries of parame-
ters). The result shows that there are 2,163 personal knowledge

templates, among which 2,006 (92.7%) are correct, and 625
non-personal templates, among which 414 (66.2%) are correct.
The overall correctness ratio of template discovering is 86.8%.
The correctness for non-personal templates is relatively low
because those notifications are usually less-structured. Such
notifications include top news, sales information, etc., many
of which are manually crafted without a template. However, it
is not a huge problem as we are not going to extract knowledge
from these non-personal templates anyway. Figure 4c shows
the distribution of the number of matched users per personal
knowledge template (i.e. the users who have one or more no-
tifications matching the template). On average, each personal
knowledge template has matched 1,571 users.

About 5.7% of all notifications contain personal informa-
tion3. Specifically, 6,824,002 out of 119,289,901 notifications
are identified as personal notifications, as they can match
one of the discovered personal knowledge templates. The
distribution of the number of personal notifications per user
is shown in Figure 4b. Around 10% of the users have more
than 200 personal notifications. On average, there were at
least 68 push notifications for each user that contain personal
knowledge. As we only considered a subset of notifications

3The proportion can be higher if we consider more types of personal
knowledge beyond what have been defined in this paper.
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Fig. 5: Number of matched users per knowledge type.

due to the limitation of our dataset, we believe that more
personal notifications can be found on actual smartphones.

C. Accuracy of Template Semantic Analysis

We also conducted experiments to evaluate how well our
system can correctly understand the semantics of previously
unseen templates. We used the 2,788 notification templates
from 409 apps discovered with our template discovering
method, as described in Section IV-B.

We manually labeled the knowledge triple templates for
each notification template according to our personal knowl-
edge ontology (Table I) as the ground truth. Figure 5 shows
the number of users that have each type of knowledge (a user
is identified to have a type of knowledge if one of his/her
notifications matches a template in that knowledge type). As
we can see, only a small portion of users have user-profile-
related knowledge in their notifications, while lots of them
can be extracted knowledge in social relationship, location,
and shopping categories. This is because only few apps put
user’s personal information (name, gender, profession, etc.)
into notifications and even fewer users are using these apps.

Each knowledge triple template is a label in our classifica-
tion model, and each notification template can have zero or
more labels. Labels are selected in order that there are enough
samples (notification templates having the label) for machine
learning. For example, the knowledge triple templates with
gender relation and profession relation are not used as
label in this experiment as they don’t have enough samples. In
total, we selected two 0-parameter KTTs to evaluate the
classification of templates and seven 1-parameter KTTs
to evaluate the classification of parameters, as shown in
Table III.

We considered two situations where we need to predict
semantic rules for unseen notification templates. The first is
that when a new app is added to our system, all of the
notification templates used by that app are unseen. The second
is that when an existing app is updated, it may use a new
template to bring information to its users. We designed two
experiments to evaluate our system’s performance for both
situations:

• We first ran a 5-fold cross-validation to check whether our
system is able to handle unseen templates from unseen
apps. For each label, we randomly divided the 417 apps
into 5 sets such that each set had approximately equal
amount of apps whose templates have the label. For
example, each set will have about 9 apps that contain
<u, follows, $p> knowledge triples, as there are
in total 45 apps containing such knowledge.

• In the second experiment, we also use 5-fold cross-
validation, but with different partitioning method. For
each app, we randomly divided its templates to 5 sets.
We used 4 sets for training and the remaining 1 set for
predicting in each fold.

The results of the both experiments are shown in Table III.
Overall, our semantic model is able to accurately predict
labels (i.e. generate semantic rules) for unseen templates. The
accuracy of predicting labels for new templates of existing
apps is high (89.41% precision and 92.19% recall), which is
not a surprise because the new templates of an app are usually
similar to its old templates.

For unseen apps’ templates, the precision (83.62%) and the
recall (82.56%) are both lower than the other situation. Is
is because that different apps may use significantly different
ways to express same types of knowledge. For example, a
live streaming app (such as Twitch) may notify users about
the updates of their subscribed anchors using “$param is
live streaming.”, while an online publishing app (such as
Medium) may notify users about the updates of their favorite
authors using “$param posted a new article.”, both notifi-
cation templates express a following social relationship while
using totally different vocabularies. However, the accuracy is
acceptable for most common use cases of personal knowledge,
such as recommender systems and conversational bots.

Among the knowledge relations considered in our evalua-
tion, the accuracy for “livesNear”, “purchases” and “wantsTo-
Buy” is relatively low. One major reason is that these relations
can be expressed in a wide range of ways, while our dataset
only contains a limited number of apps, each using a specific
way to express the knowledge. We think this problem can be
tempered by adding more training data, such as more labeled
notification templates from other apps.

V. LIMITATIONS AND FUTURE WORK

In this section, we highlight some of the limitations of our
system and discuss possible solutions.

Strong privacy guarantee. Our system is privacy-
preserving because it only uploads the notification templates
to the server. However, it is not a strong privacy guarantee
because the uploaded templates may contain personal infor-
mation if the templates are incorrect. One possible solution
is to scan potential templates for sensitive information before
uploading, e.g. using Named Entity Recognition techniques.

Real-world scenario. Our system is evaluated with a dataset
provided by a push notification service provider, which only
contains remotely-generated notifications from a small subset
of apps. The real scenario might be different as we will be



TABLE III: Accuracy of template semantic analysis. We used our model to predict labels (knowledge triple templates) for
unseen notification templates, including the templates used by unseen apps and the new templates of existing apps.

KTT Category KTT #apps #templates Templates of unseen apps New templates of existing apps
precision recall precision recall

0-param <u, status, job_hunt> 8 48 92.31% 71.79% 94.13% 93.89%
<u, status, car_hunt> 10 97 92.40% 77.37% 91.27% 89.68%

1-param

<u, name, $p> 22 90 87.81% 85.45% 93.77% 95.91%
<u, follows, $p> 45 217 90.37% 76.21% 90.85% 93.89%

<u, isFriendOf, $p> 129 485 87.12% 86.52% 90.21% 92.95%
<u, livesNear, $p> 16 157 74.13% 71.40% 93.94% 87.58%
<u, travelsTo, $p> 9 39 93.38% 86.72% 89.66% 92.10%
<u, purchases, $p> 22 83 73.30% 86.85% 87.50% 91.79%
<u, wantsToBuy, $p> 41 234 76.93% 84.45% 82.31% 90.88%

Overall 302 1450 84.50% 81.86% 89.69% 92.08%

able to access all notifications on users’ smartphones. In the
future, we would like to deploy our system and evaluate the
performance of our system in the real-world scenario.

Comprehensive personal knowledge ontology. We consid-
ered three common categories of personal knowledge in our
implementation. However, a lot of other knowledge categories
can be found in push notifications, such as work information,
travel information, etc. Meanwhile, our knowledge ontology is
specifically designed for personal knowledge in push notifica-
tions. There ought to be a more complete and formal ontology
of personal knowledge, like the one defined in Schema.org [8]
for world’s knowledge.

Other ways to obtain notification templates. Our ap-
proach requires a portion of users to upload discovered notifi-
cation templates for offline learning. This requirement might
be hard to fulfill if our system does not have enough users.
We can solve this problem by using other methods to obtain
an initial set of notification templates, such as extracting the
templates from application code through static analysis, or
generating notifications by automatically testing the apps [21].

VI. RELATED WORK

A. Personal Knowledge Extraction

Personal knowledge extraction has attracted researchers’
interests. The commonly used data sources of personal knowl-
edge include conversational dialogs, SMS messages, sensor,
and UI content. For example, Vhaduri et al. [22] proposed
to mine users’ places of interest and mobility patterns from
mobile data. Min et al. [7] analyzed communication logs to
infer users’ social relationships. Spolaor et al. [23] presented
a tool to extract UI interaction data for user habit analysis.
Li et al. [6] introduced a statistical language understanding
approach to construct personal knowledge graph from conver-
sational dialogs.

As the data sources of personal knowledge are often privacy-
sensitive, a lot of approaches have been proposed to mitigate
the privacy concern during knowledge mining. PrivacyStreams
[24] introduced an Android library for app developers to
process personal data locally and transparently. PERUIM [25]
analyzed the privacy sensitivity of apps’ UI content. Appstract
[26] used an offline user-agnostic learning phase and an on-
device predicting phase to preserve the privacy of UI content

analysis. Inspired by Appstract, our system also adopts a two-
phase method to minimize users’ privacy concern.

B. Notification Analysis

Prior to our work, push notifications have been studied by
researchers from different aspects. Most researchers have fo-
cused on the disruptive nature of push notifications [27], [28],
[1], [29] in order to guide the design implementation of better
notification systems. For example, Shirazi et al. [27] analyzed
a large scale of notifications and revealed the differences in
the importance of notifications. Mehrotra et al. [28], [29]
analyzed how notifications with different content, sender and
context can cause disruption to users. Other researchers have
also explored the effects of push notifications to foster meta-
learning [30] and self-logging [31]. Our work does not aim
to improve the notification mechanisms or use notifications to
influence users’ behaviors, instead, we use notification content
for a broader purpose: building a personal knowledge base.

C. Wrapper Generation

Wrapper in data mining is a program that extracts content
of a particular information source and translates it into a
relational form. The aim of a wrapper is to locate relevant
information in semi-structured data and to put it into a self-
described representation for further processing [32]. Typically,
wrappers are used to extract structured data, such as telephone
directories, product catalogs, etc. from web pages formatted
with fixed HTML templates. Wrappers can be generated man-
ually by experts, semi-automatically through supervised learn-
ing [32], [33], [34], or automatically through unsupervised
learning [35], [36], [18]. Our work deals with another form of
wrapper: push notification templates. We used an unsupervised
approach to discover the templates and supervised machine
learning to understand the semantic rules of the templates.

VII. CONCLUDING REMARKS

This paper proposes an approach for extracting personal
knowledge from smartphone push notifications. It is able to
automatically identify templates from notification text using
pattern mining techniques, and then understand the semantics
of the templates through supervised machine learning. The
approach is privacy-preserving as only the templates might be
uploaded to the server for labeling and learning.



We have implemented a prototype system on Android and
evaluate it with three common categories of personal knowl-
edge. Experiments on about 120 million push notifications
from 100,000 smartphone users show that we are able to dis-
cover and understand notification templates accurately, while
successfully use the templates to extract personal knowledge
from push notifications.
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