
DroidBot: A Lightweight UI-Guided Test Input
Generator for Android

Yuanchun Li, Ziyue Yang, Yao Guo, Xiangqun Chen

Key Laboratory of High-Confidence Software Technologies (Ministry of Education)

School of Electronics Engineering and Computer Science, Peking University, Beijing, China

Email: {yuanchun.li, yzydzyx, yaoguo, cherry}@pku.edu.cn

Abstract—As many automated test input generation tools for
Android need to instrument the system or the app, they cannot be
used in some scenarios such as compatibility testing and malware
analysis. We introduce DroidBot, a lightweight UI-guided test
input generator, which is able to interact with an Android app on
almost any device without instrumentation. The key technique
behind DroidBot is that it can generate UI-guided test inputs
based on a state transition model generated on-the-fly, and allow
users to integrate their own strategies or algorithms. DroidBot
is lightweight as it does not require app instrumentation, thus
no need to worry about the inconsistency between the tested
version and the original version. It is compatible to most
Android apps, and able to run on almost all Android-based
systems, including customized sandboxes and commodity devices.
Droidbot is released as an open-source tool on GitHub [1], and
the demo video can be found at https://youtu.be/3-aHG SazMY.

Keywords-Android; dynamic analysis; automated testing; mal-
ware detection; compatibility testing;

I. INTRODUCTION

In recent years, mobile applications (apps in short) have

seen widespread adoption, with over two million apps avail-

able for download in both Google Play and Apple App Store,

while billions of downloads have been accumulated.

As there are many apps and many different devices, au-

tomating app testing has become an important research direc-

tion. In particular, a great deal of research has been focused

on automated input generation techniques for Android apps.

According to a recent survey [2], most approaches make use

of either app instrumentation or system modification in order

to get enough information to guide testing.

However, it is unrealistic to instrument an app or the system

in some scenarios. For example, in compatibility testing, an

app should be tested “as is” on commodity devices in order to

find out which device may cause a crash. Another example is

malware analysis. As many malicious apps are obfuscated, it

might be difficult, even not impossible, to instrument them.

Some malicious apps also apply sandbox detection, which

might lead to different behaviors on instrumented testing

devices and real devices.

This demonstration paper presents DroidBot, a lightweight

UI-guided test input generator for Android apps. The design

principle of DroidBot is to support model-based test input

generation with minimal extra requirements.

DroidBot offers UI-guided input generation based on a state

transition model, which is generated on-the-fly at runtime. It

then generates UI-guided test inputs based on the transition

model. By default the input is generated with a depth-first

strategy, which is effective for most cases. Users can also

customize the exploration strategy by writing scripts or inte-

grate their own algorithms by extending the event generation

modules, making DroidBot a highly extensible tool.

The main reason why DroidBot is more lightweight is

that it does not require prior knowledge of unexplored code.

Unlike many existing generators which rely on static analysis

and instrumentation to get knowledge of unexplored code,

DroidBot only models the explored states based on a set

of Android built-in testing/debugging utilities. Although this

might make DroidBot harder to trigger some specific states, the

trade-off enables DroidBot to work with any apps (including

the obfuscated/encrypted apps that cannot be instrumented) on

almost any customized device (unless the device intentionally

removes the built-in testing/debugging modules from the orig-

inal Android framework, which rarely occurs.).

DroidBot also offers a new way to evaluate the effectiveness

of test inputs. Existing approaches mainly use EMMA [3] on

open-source apps or instrument apps to calculate test coverage.

However, for anti-instrumentation apps (for example verifying

the signature at runtime or encrypting the code), it is difficult

or even impossible to get their test coverage. DroidBot is able

to generate the call stack trace for each test input, which

contains the app methods and system methods triggered by

the test input. We can use the call stack as an approximate

metric to quantify the effectiveness of test inputs.

The source code of DroidBot is available at GitHub [1].

II. TOOL DESIGN

The overall architecture of DroidBot is shown in Figure 1.

To test an app on a device, DroidBot requires the device being

connected via ADB. The device could be an emulator, a com-

modity device, or a customized sandbox such as TaintDroid [4]

and DroidBox [5].

We introduce the Adapter module to provide an abstraction

of the device and the app under test (AUT). It deals with

low-level technical issues such as compatibility with different

Android versions and different screen sizes, maintaining con-

nection with the device, sending commands to the device and

processing command outputs, etc.

The Adapter also acts as a bridge between the test environ-

ment and the test algorithm. On one hand, it monitors the state

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.8

23

DroidBot

Android
DeviceApp

Adapter

GUI info
Process info

Logs

GUI input
Intent
Document
Sensor

strategy
script…

App model

Brain

Fig. 1. DroidBot Overview.

of the device and AUT and converts the state information to

structured data. On the other hand, it receives the test inputs

generated by the algorithm and translates them to commands.

With the Adapter, DroidBot is able to provide a set of easy-

to-use high-level APIs for users to write algorithms while en-

suring that the algorithms work in different test environments.

The Brain module receives device and app information

produced by the Adapter at run-time, and sends generated

test inputs to the Adapter. Test input generation is based on a

state transition graph constructed on the fly. Each node of the

graph represents a device state, while the edge between each

pair of nodes represents the test input that triggered the state

transition. DroidBot integrates a simple but effective depth-

first exploration algorithm to generate test inputs. It also allows

users to integrate their own algorithms or use app-specific

scripts to improve the test strategy.

Such design improves the usability of DroidBot. Table I

shows the usability comparisons between DroidBot and other

public-available test input generation tools. We can see that

DroidBot requires as little requirements as Monkey, while

providing much more extensible features comparable to other

tools requiring instrumentation.

III. IMPLEMENTATION

A. Lightweight Monitor and Input

DroidBot fetches device/app information from the device

and sends test inputs to the device through ADB. Both the

monitoring and input phases are lightweight because they are

TABLE I
USABILITY COMPARISON OF EXISTING PUBLICLY-AVAILABLE BLACK-BOX

TEST INPUT GENERATORS. NOTE THAT SOME DATA IS FROM

CHOUDHARY et al. [2].

Tool
Instrumentation

Strategy Programmable
System App

Monkey [6] � � Random �
AndroidRipper [7] � � Model �

DynoDroid [8] � � Random �
SwiftHand [9] � � Model �
PUMA [10] � � Model �

DroidMate [11] � � Model �
DroidBot [1] � � Model �

mostly based on existing Android debugging/testing utilities,

which are available on most Android devices.

The information fetched from the device can be categorized

into three sets:

1) GUI information. For each UI, DroidBot records the

screenshot and the UI hierarchy tree dumped using

UI Automator (for SDK version higher than 16) or

Hierarchy Viewer (for lower versions);

2) Process information. DroidBot monitors system-level

process status using the ps command and app-level

process status using the dumpsys tool in Android.

3) Logs. Logs include the method trace triggered by each

test input and the logs produced by the app. They can

be retrieved from the Android profiling tool and logcat.

The test input types supported by DroidBot include

UI inputs (such as touching, scrolling, etc.), intents

(BOOT COMPLETED broadcast, etc.), documents to upload

(image, txt, etc.) and sensor data (GPS signal etc.). Note that

the sensor simulation is only supported by emulation.

DroidBot provides a list of easy-to-use APIs for fetch-

ing information from the device and sending inputs to

the device. For example, developers can simply call

device.dump_views() to get a list of UI views and call

view.touch() to send a touch input to a view.

B. On-the-fly Model Construction

DroidBot generates a model of AUT based on the infor-

mation monitored at runtime. The model aims to help input

generation algorithms to make better test input choices.

Figure 2 shows an example of a state transition model.

Basically, the model is a directed graph, in which each node

represents a device state, and each edge between two nodes

represents the test input event that triggered the state transition.

A state node typically contains the GUI information and the

running process information, and an event edge contains the

details of the test input and the methods/logs triggered by the

input.

The state transition graph is constructed on the fly. DroidBot

maintains the information of the current state, and monitors

the state changes after sending a test input to the device. Once

the device state is changed, it adds the test input and the new

state to the graph, as a new edge and a new node.

24242424242424242424

State 1
GUI:

Process info:
 System: zygote, …
 Activity: HomeActivity
 Services: PushService, …

Event 1
Input:
 Type: Touching
 View:

 Command:

Logs:
 Trace: onTouch(), startActivity(), …
 Logcat:
 <debug output>
 <error messages>

state 1

state 3

state 2

event 1

event 2

event 3

TableLayout

AdView
id/

adMobView

FrameLayout

FrameLayout

TableRow TableRow TableRow

View
id/

frm_weather

View
id/

frm_mylocati
on

… …

Fig. 2. An example of state transition graph. Note that the data in this graph
is simplified for easy understanding.

The graph construction process relies on the underlying state

comparison algorithm. Currently, DroidBot uses content-based

comparison, where two states with different UI contents are

considered as different nodes.

C. Quantifying the Effectiveness of Test Input

One problem faced by researchers and testers when con-

ducting black-box testing is the difficulty to evaluate testing

effectiveness, as the existing test coverage methods either

require the source code of AUT [3] or need to instrument

the AUT [12].

DroidBot integrates two methods to quantify the test effec-

tiveness without source code or instrumentation:

• Method tracing. DroidBot is able to print the method trace

of each test input using the Android official profiling tool.

The method trace contains the app methods and system

methods triggered by the test input. With the method

trace, we are also able to calculate the method coverage

if the total number of methods is available.

• Sensitive behavior monitoring. For malware analysis, the

number of sensitive behaviors triggered can reflect the test

effectiveness. For example, DroidBot can be used with

DroidBox [5] to monitor the sensitive behaviors triggered

by each input.

The method tracing mechanism scales better as it works

with almost any device and any app, while the sensitive
behavior monitoring mechanism requires apps running in a

certain sandbox. However, the number of sensitive behaviors

might be more intuitive in malware analysis. Both methods are

unable to give a normalized value of how effective a test case

exactly is, but they can provide meaningful statistics when

comparing different test cases on the same app.

(a) Total number of sensitive behaviors in four categories.

(b) Speed of triggering sensitive behaviors.

Fig. 3. Comparison of the effectiveness in triggering sensitive behaviors
when testing a malware with Monkey and DroidBot.

IV. USAGE SCENARIOS

A. Compatibility Analysis

One of the useful scenarios of DroidBot is compatibility

testing, which is aimed at evaluating the app’s correctness and

robustness when running on different devices. Compatibility

testing should be performed on many different commodity

devices thus system instrumentation is unrealistic. Meanwhile,

app instrumentation might also be unwanted because instru-

mented app may behave differently from the original app.

With DroidBot, a developer is able to test his/her app on

different devices without instrumentation, reaching more UI

states in much shorter time compared to Monkey. Moreover,

with the scripting feature provided by DroidBot, the developer

can customize the test input to generate.

B. Malware Analysis

Malware analysis is also a useful scenario of DroidBot. As

many malware encrypt their code or check their signature

before doing malicious things, it might be impossible to

instrument them or guarantee the consistency between the

instrumented app and the original app.

Monkey [6] is able to test malware without instrumentation,

but the random strategy of Monkey might not be efficient in

discovering the malicious behaviors. DroidBot is as easy-to-

use as Monkey but is better in app exploration as it uses a

model-based strategy. For example, if a malware does not per-

form malicious behavior until the user clicks certain buttons,

it might be difficult for randomized test input generator to

find the correct buttons, while model-based generator have the

25252525252525252525

information about the AUT fetched from the device at runtime,

thus is easier to trigger the sensitive behaviors.

Figure 3 shows the comparison to Monkey in a proof-of-

concept example of using DroidBot in malware analysis. We

selected a malware which encrypted its code as the app under

test, and used DroidBox [5] as the testing device in order to

monitor the sensitive behaviors, such as file accesses, network

accesses, data leaks, etc.

We use Monkey and DroidBot to generate test input respec-

tively. The result shows that the amount of sensitive behaviors

triggered by DroidBot is much higher than Monkey, while the

inputs generated by Monkey almost did not trigger any extra

sensitive behaviors. We inspected the test processes of Monkey

and DroidBot. The reason for Monkey’s ineffectiveness is that

the app requires users to touch two buttons in a pop-up dialog

successively to enter a malicious state. DroidBot successfully

found the buttons and touched them in around 80 seconds,

while the randomized test inputs generated by Monkey failed

to pass the pop-up dialog.

V. RELATED WORK

Test input generation for Android has been drawing re-

searchers’ interests for a long time.

Monkey [6] is the most popular tool to perform black box

testing, and it is the most light-weighted. However, the inputs

generated by Monkey are completely random, which is not ex-

tensible and easy to be intentionally bypassed. DynoDroid [8]

also generates randomized input, but it is smarter in selecting

test inputs.

AndroidRipper [7], SwiftHand [9], A3E [13] and

GUICC [14] are model-based automated test generators, while

using different methods to construct the model and generate

input based on the model. PUMA [10] is a model-based

test framework, which is programmable with PUMAScript.

SmartDroid [15] and Brahmastra [16] are focused on targeted

testing which aims to trigger certain pieces of code.

Andlantis [17] is designed for malware analysis. It is

focused on large-scale virtual machine management and able

to execute malware on multiple emulators at the same time.

DroidMate [11] is a similar approach to DroidBot as it also

emphasizes robustness and extensible strategy, however it still

needs a slight instrumentation to enable API monitoring.

Compared to these tools, DroidBot is as easy to use as Mon-

key, while providing much advanced features as most other

tools, including model-based input generation and extensible

scripting, etc.

VI. CONCLUSION

This demonstration presents DroidBot, a lightweight test

input generator for Android apps. DroidBot is able to test an

Android app on almost any device with minor environment

requirements. It is easy to use, because on one hand, it is

extensible based on a set of high-level APIs and a state

transition model constructed on the fly, on the other hand,

it provides a set of utilities to evaluate the test effectiveness.

Besides regular testing tasks, DroidBot can also be used in

scenarios including compatibility testing, malware analysis

and other cases where instrumentation is unwanted.

ACKNOWLEDGMENT

This work is partly supported by the National Key Research

and Development Program under Grant No.2016YFB1000105

and the National Natural Science Foundation of China under

Grant No.61421091.

REFERENCES

[1] honeynet, “Droidbot: A lightweight test input generator for android,”
https://github.com/honeynet/droidbot, 2016, accessed: 2016-11-10.

[2] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for android: Are we there yet? (e),” in Proceedings of the
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), ser. ASE ’15. Washington, DC, USA: IEEE
Computer Society, 2015, pp. 429–440.

[3] V. Roubtsov, “Emma: a free java code coverage tool,” 2006.
[4] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,

and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10, 2010, pp. 393–407.

[5] A. Desnos and P. Lantz, “Droidbox: An android application sandbox for
dynamic analysis,” 2011.

[6] A. Developers, “Ui/application exerciser monkey,” 2012.
[7] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and

A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012, 2012,
pp. 258–261.

[8] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2013, 2013,
pp. 224–234.

[9] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA
’13, 2013, pp. 623–640.

[10] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’14, 2014, pp.
204–217.

[11] K. Jamrozik and A. Zeller, “Droidmate: A robust and extensible test
generator for android,” in Proceedings of the International Conference
on Mobile Software Engineering and Systems, ser. MOBILESoft ’16,
2016, pp. 293–294.

[12] ylimit, “androcov: measure test coverage without source code,”
https://github.com/ylimit/androcov, 2016, accessed: 2016-11-10.

[13] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, ser. OOPSLA ’13, 2013, pp.
641–660.

[14] Y.-M. Baek and D.-H. Bae, “Automated model-based android gui
testing using multi-level gui comparison criteria,” in Proceedings of
the 31st IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2016, 2016, pp. 238–249.

[15] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou, “Smart-
droid: An automatic system for revealing ui-based trigger conditions in
android applications,” in Proceedings of the Second ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, ser. SPSM
’12, 2012, pp. 93–104.

[16] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14, 2014, pp. 1021–1036.

[17] M. Bierma, E. Gustafson, J. Erickson, D. Fritz, and Y. R. Choe,
“Andlantis: large-scale android dynamic analysis,” arXiv preprint
arXiv:1410.7751, 2014.

26262626262626262626

